Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Nanosci Nanotechnol ; 19(3): 1592-1596, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469228

RESUMEN

The brazing characteristics and bonding strengths of pure titanium joints are evaluated for joints brazed with Zr-17Ti-22Ni filler. Vacuum brazing was conducted at temperatures between the melting temperatures of the filler metals and the beta-transition temperature of pure titanium at 3 MPa of pressure for 5 min. Fracturing of the pure titanium joint brazed at 1,093 K occurred before yielding during the tensile tests owing to the presence of a serious segregation region containing harder and more brittle [Ti, Zr]2Ni intermetallic compounds. In contrast, in pure titanium joints brazed at and above 1,113 K, fracturing occurred at the base metal. The yield strengths of the samples brazed at 1,113 K-1,133 K were estimated to be in the range of 320-350 MPa and the ultimate tensile strengths likewise ranged from 350 to 380 MPa. The strength of pure titanium brazed at 1,153 K decreased rapidly. The results of this study show that the optimum temperature to ensure good performance after the brazing of pure titanium with Zr-17Ti-22Ni as a filler metal ranges from 1,113 K to 1,133 K.


Asunto(s)
Titanio , Temperatura , Resistencia a la Tracción
2.
Biochem Biophys Res Commun ; 503(4): 2510-2516, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30208519

RESUMEN

The main obstacles for practical uses of cytosol-penetrating peptides and proteins include their lack of cell- or tissue-specific targeting and limited cytosolic access owing to the poor endosomal escape ability. We have previously reported a cytosol-penetrating, human IgG1 antibody TMab4-WYW, generally referred to as a cytotransmab (CT), which reaches the cytosol of living cells but nonspecifically because it is endocytosed via a ubiquitously expressed receptor called heparan sulfate proteoglycan (HSPG). Here, our aim was to construct a next-generation CT with tumor cell specificity and improved endosomal escape efficiency. We first substantially reduced the HSPG-binding activity of TMab4-WYW and then fused a cyclic peptide specifically recognizing tumor-associated epithelial cell adhesion molecule (EpCAM) to the N terminus of the light chain for EpCAM-mediated endocytosis, while maintaining the endosomal escape ability in the light chain variable domain (VL), thus generating epCT05. Then, we separately engineered another CT, dubbed epCT65-AAA, with an endosomal escape ability only in the heavy chain variable domain (VH) but not in VL, by functional grafting of the endosomal escape motif of epCT05 VL to the VH. We finally combined the heavy chain of epCT65-AAA and the light chain of epCT05 to create epCT65 with endosomal escape capacity in both the VH and VL. epCT65 effectively localized to the cytosol of only EpCAM-expressing tumor cells and showed approximately twofold improved endosomal escape efficiency, as compared with CTs with endosomal escape motifs in either VH or VL. The full-IgG format CT, epCT65, with a tumor cell-specific cytosol-penetrating activity, has a great potential for practical medical applications, e.g., as a carrier for cytosolic delivery of payloads.


Asunto(s)
Péptidos de Penetración Celular/genética , Citosol/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Inmunoglobulina G/uso terapéutico , Ingeniería de Proteínas/métodos , Línea Celular Tumoral , Endosomas/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Células HeLa , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo
3.
J Nanosci Nanotechnol ; 18(3): 2049-2053, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448710

RESUMEN

WC based alloy coatings included different mass percent of Co and Cr have been synthesized on high carbon steel by using a facile high velocity oxy-fuel spray method. The mechanical nature of the coating films has been investigated by micro vickers hardness and fracture toughness. X-ray diffraction (XRD) and EDX analyses indicate that the three different samples (WC-10Co-4Cr, WC-17Co, and WC-12Co) consist of pure WC, W, Cr, and Co constituents as well as W2C and Co6W6C phases. The SEM and image analysis results show that WC-10Co-4Cr condition has higher porosity than those of WC-17Co, and WC-12Co coatings. WC-17Co coating showed the highest value in the hardness and fracture toughness test among three different samples. The obtained results revealed that the mechanical properties of WC based alloy coatings synthesized by a facile high velocity oxy-fuel spray method is very sensitive to Co content.

4.
J Biol Chem ; 291(28): 14620-7, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27226621

RESUMEN

Although it has been established that diabetes increases susceptibility to infections, the role of insulin (INS) in the immune response is unknown. Here, we investigated the immunological function of INS. Proinsulin dimer (pINSd) was a potent immune stimulus that induced inflammatory cytokines, but mature INS was unable to induce an immune response. An affinity-purified rabbit polyclonal antibody raised against mature IL-1α recognized IL-1α and pINS but failed to detect mature INS and IL-1ß. Analysis of the pINS sequence revealed the existence of an INS/IL-1α motif in the C-peptide of pINS. Surprisingly, the INS/IL-1α motif was recognized by monoclonal antibody raised against IL-1α. Deleting the INS/IL-1α motif in pINSd and IL-1α changed their activities. To investigate the pINSd receptor, the reconstitution of IL-1 receptor 1 (IL-1R1) in Wish cells restored pINSd activity that was reversed by an IL-1R antagonist. These data suggested that pINSd needs IL-1R1 for inflammatory cytokine induction. Mouse embryo fibroblast cells of IL-1R1-deficient mice further confirmed that pINSd promotes immune responses through IL-1R1.


Asunto(s)
Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Interleucina-1alfa/metabolismo , Proinsulina/metabolismo , Receptores de Interleucina-1/metabolismo , Animales , Células Cultivadas , Interleucina-1alfa/química , Ratones , Proinsulina/química
5.
Cytokine ; 83: 33-40, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27031441

RESUMEN

Interleukin-33 (IL-33) receptors are composed of ST2 (also known as IL-1R4), a ligand binding chain, and IL-1 receptor accessory protein (IL-1RAcP, also known as IL-1R3), a signal transducing chain. IL-1R3 is a common receptor for IL-1α, and IL-1ß, IL-33, and three IL-36 isoforms. A549 human lung epithelial cells are highly sensitive to IL-1α and IL-1ß but not respond to IL-33. The lack of responsiveness to IL-33 is due to ST2 expression. ST2 was stably transfected into A549 cells to reconstitute its activity. RT-PCR and FACS analysis confirmed ST2 expression on the cell surface of A549/ST2 cells. Upon IL-33 stimulation, A549/ST2 cells induced IL-8 and IL-6 production in a dose dependent manner while A549/mock cells remained unresponsive. There was no difference in IL-1α and IL-1ß activity in A549/ST2 cells compared to A549/mock cells despite the fact that IL-33 shares IL-1R3 with IL-1α/ß. IL-33 activated inflammatory signaling molecules in a time- and dose-dependent manner. Anti-ST2 antibody and soluble recombinant ST2-Fc abolished IL-33-induced IL-6 and IL-8 production in A549/ST2 cells but the IL-1 receptor antagonist failed to block IL-33-induced cytokines. This result demonstrates for the first time the reconstitution of ST2 in A549 human lung epithelial cell line and verified its function in IL-33-mediated cytokine production and signal transduction.


Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Transducción de Señal/fisiología , Células A549 , Regulación de la Expresión Génica/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-1alfa/genética , Interleucina-1beta/genética , Interleucina-33/genética , Interleucina-6/sangre , Interleucina-6/genética , Interleucina-8/biosíntesis , Interleucina-8/genética
6.
Biochem Biophys Res Commun ; 467(4): 771-7, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26482850

RESUMEN

Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 µM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3-4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Bioensayo/métodos , Citosol/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Inmunoglobulina G/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/genética , Western Blotting , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Proteínas Fluorescentes Verdes/genética , Células HEK293/metabolismo , Células HeLa/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia/métodos
7.
Protein Expr Purif ; 71(1): 42-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20006709

RESUMEN

The neonatal Fc receptor (FcRn) is a non-covalently associated heterodimeric protein composed of a transmembrane anchored heavy chain (alphaFcRn) and a soluble light chain beta2-microglobulin (beta2m). In addition to its role in the transfer of maternal immunoglobulin Gs (IgGs) to the fetus, FcRn plays a key role in prolonging the serum half-life of IgGs in vivo. Herein, we report a strategy for functional expression of soluble human FcRn (shFcRn) in Pichia pastoris using a two-promoter vector system, where alphaFcRn and beta2m are co-expressed under their respective promoters in a single vector. The purified shFcRn from the culture supernatants correctly assembled to form the heterodimer with the typical secondary structures. At acidic pHs between 5.0 and 6.4, shFcRn exhibited substantial binding to the four subclasses of human IgGs at acidic pHs between 5.0 and 6.4, but at pHs between 6.8 and 8.0, its binding was negligible binding. No cross-reactivity with mouse IgG was exhibited even at acidic pH. This was consistent with the pH-dependent binding profiles of the shFcRn prepared from the mammalian cell expression. Furthermore, the shFcRn exhibited about 10-fold higher binding affinity with the tumor necrosis factor-alpha antagonists of monoclonal antibodies Infliximab and Adalimumab than that of Etanercept, providing a clue to their different serum half-lives in vivo. Our results suggest that the functionally expressed shFcRn from Pichia can be used for the biochemical and biological studies and as a screening probe for Fc engineering of human IgGs.


Asunto(s)
Técnicas Genéticas , Antígenos de Histocompatibilidad Clase I/metabolismo , Pichia/metabolismo , Receptores Fc/metabolismo , Adalimumab , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales Humanizados , Etanercept , Vectores Genéticos/genética , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/aislamiento & purificación , Humanos , Inmunoglobulina G/metabolismo , Infliximab , Cinética , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Secundaria de Proteína , Receptores Fc/química , Receptores Fc/aislamiento & purificación , Receptores del Factor de Necrosis Tumoral/metabolismo , Solubilidad , Transformación Genética , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
8.
Sci Adv ; 6(3): eaay2174, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31998840

RESUMEN

Oncogenic RAS mutant (RASMUT) proteins have been considered undruggable via conventional antibody regimens owing to the intracellular location restricting conventional-antibody accessibility. Here, we report a pan-RAS-targeting IgG antibody, inRas37, which directly targets the intracellularly activated form of various RASMUT subtypes after tumor cell-specific internalization into the cytosol to block the interactions with effector proteins, thereby suppressing the downstream signaling. Systemic administration of inRas37 exerted a potent antitumor activity in a subset of RASMUT tumor xenografts in mice, but little efficacy in RASMUT tumors with concurrent downstream PI3K mutations, which were overcome by combination with a PI3K inhibitor. The YAP1 protein was up-regulated as an adaptive resistance-inducing response to inRas37 in RASMUT-dependent colorectal tumors; accordingly, a combination of inRas37 with a YAP1 inhibitor manifested synergistic antitumor effects in vitro and in vivo. Our study offers a promising pan-RAS-targeting antibody and the corresponding therapeutic strategy against RASMUT tumors.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Inmunoglobulina G/farmacología , Mutación , Neoplasias/genética , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética , Animales , Antineoplásicos Inmunológicos/farmacocinética , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Endocitosis , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Commun ; 8: 15090, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28489072

RESUMEN

Oncogenic Ras mutants, frequently detected in human cancers, are high-priority anticancer drug targets. However, direct inhibition of oncogenic Ras mutants with small molecules has been extremely challenging. Here we report the development of a human IgG1 format antibody, RT11, which internalizes into the cytosol of living cells and selectively binds to the activated GTP-bound form of various oncogenic Ras mutants to block the interactions with effector proteins, thereby suppressing downstream signalling and exerting anti-proliferative effects in a variety of tumour cells harbouring oncogenic Ras mutants. When systemically administered, an RT11 variant with an additional tumour-associated integrin binding moiety for tumour tissue targeting significantly inhibits the in vivo growth of oncogenic Ras-mutated tumour xenografts in mice, but not wild-type Ras-harbouring tumours. Our results demonstrate the feasibility of developing therapeutic antibodies for direct targeting of cytosolic proteins that are inaccessible using current antibody technology.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Proliferación Celular/efectos de los fármacos , Citosol/metabolismo , Inmunoglobulina G/farmacología , Neoplasias/genética , Proteínas ras/genética , Animales , Línea Celular Tumoral , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células HL-60 , Células HT29 , Células HeLa , Humanos , Células K562 , Células MCF-7 , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Células 3T3 NIH , Trasplante de Neoplasias , Neoplasias/tratamiento farmacológico , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/antagonistas & inhibidores , Proteínas ras/metabolismo
10.
Immune Netw ; 17(2): 116-120, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28458623

RESUMEN

The induction of interleukin (IL)-32 in bone marrow (BM) inflammation is crucial in graft versus host disease (GvHD) that is a common side effect of allogeneic BM transplantation. Clinical trials on α-1 antitrypsin (AAT) in patients with GvHD are based on the preliminary human and mouse studies on AAT reducing the severity of GvHD. Proteinase 3 (PR3) is an IL-32-binding protein that was isolated from human urine. IL-32 primarily induces inflammatory cytokines in myeloid cells, probably due to PR3 expression on the membrane of the myeloid lineage cells. The inhibitory activity of AAT on serine proteinases may explain the anti-inflammatory effect of AAT on GvHD. However, the anti-inflammatory activity of AAT on BM cells remains unclear. Mouse BM cells were treated with IL-32γ and different inflammatory stimuli to investigate the anti-inflammatory activity of AAT. Recombinant AAT-Fc fusion protein inhibited IL-32γ-induced IL-6 expression in BM cells, but failed to suppress that induced by other stimuli. In addition, the binding of IL-32γ to PR3 was abrogated by AAT-Fc. The data suggest that the specific anti-inflammatory effect of AAT in mouse BM cells is due to the blocking of IL-32 binding to membrane PR3.

11.
J Control Release ; 235: 165-175, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27264553

RESUMEN

Endosomal escape after endocytosis is a critical step for protein-based agents to exhibit their effects in the cytosol of cells. However, antibodies internalized into cells by endocytosis cannot reach the cytosol due to their inability to escape from endosomes. Here, we report a unique endosomal escape mechanism of the IgG-format TMab4 antibody, which can reach the cytosol of living cells after internalization. Dissociation of TMab4 from its cell surface receptor heparan sulfate proteoglycan by activated heparanase in acidified early endosomes and then local structural changes of the endosomal escape motif of TMab4 in response to the acidified endosomal pH were critical for the formation of membrane pores through which TMab4 escaped into the cytosol. Identification of structural determinants of endosomal escape led us to generate a TMab4 variant with ~3-fold improved endosomal escape efficiency. Our finding of the endosomal escape mechanism of the cytosol-penetrating antibody and its improvement will establish a platform technology that enables a full-length IgG antibody to directly target cytosolic proteins.


Asunto(s)
Citosol/metabolismo , Endosomas/química , Inmunoglobulina G/administración & dosificación , Animales , Células CHO , Cricetulus , Glucuronidasa/genética , Glucuronidasa/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Inmunoglobulina G/química , Inmunoglobulina G/farmacología , Conformación Proteica , Tubulina (Proteína)/inmunología
12.
PLoS One ; 10(12): e0145349, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26675656

RESUMEN

Immunoglobulin Fc heterodimers, which are useful scaffolds for the generation of bispecific antibodies, have been mostly generated through structure-based rational design methods that introduce asymmetric mutations into the CH3 homodimeric interface to favor heterodimeric Fc formation. Here, we report an approach to generate heterodimeric Fc variants through directed evolution combined with yeast surface display. We developed a combinatorial heterodimeric Fc library display system by mating two haploid yeast cell lines, one haploid cell line displayed an Fc chain library (displayed FcCH3A) with mutations in one CH3 domain (CH3A) on the yeast cell surface, and the other cell line secreted an Fc chain library (secreted FcCH3B) with mutations in the other CH3 domain (CH3B). In the mated cells, secreted FcCH3B is displayed on the cell surface through heterodimerization with the displayed FcCH3A, the detection of which enabled us to screen the library for heterodimeric Fc variants. We constructed combinatorial heterodimeric Fc libraries with simultaneous mutations in the homodimer-favoring electrostatic interaction pairs K370-E357/S364 or D399-K392/K409 at the CH3 domain interface. High-throughput screening of the libraries using flow cytometry yielded heterodimeric Fc variants with heterodimer-favoring CH3 domain interface mutation pairs, some of them showed high heterodimerization yields (~80-90%) with previously unidentified CH3 domain interface mutation pairs, such as hydrogen bonds and cation-π interactions. Our study provides a new approach for engineering Fc heterodimers that could be used to engineer other heterodimeric protein-protein interactions through directed evolution combined with yeast surface display.


Asunto(s)
Membrana Celular/metabolismo , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Ingeniería de Proteínas/métodos , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Biblioteca de Genes , Pruebas Genéticas/métodos , Humanos , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo
13.
MAbs ; 6(6): 1402-14, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484049

RESUMEN

Full-length IgG antibodies cannot cross cell membranes of living cells; this limits their use for direct targeting of cytosolic proteins. Here, we describe a general strategy for the generation of intact, full-length IgG antibodies, herein called cytotransmabs, which internalize into living cells and localize in the cytosol. We first generated a humanized light chain variable domain (VL) that could penetrate into the cytosol of living cells and was engineered for association with various subtypes of human heavy chain variable domains (VHs). When light chains with humanized VL were co-expressed with 3 heavy chains (HCs), including 2 HCs of the clinically approved adalimumab (Humira®) and bevacizumab (Avastin®), all 3 purified IgG antibodies were internalized into the cytoplasm of living cells. Cytotransmabs primarily internalized into living cells by the clathrin-mediated endocytic pathway through interactions with heparin sulfate proteoglycan that was expressed on the cell surface. The cytotransmabs escaped into the cytosol from early endosomes without being further transported into other cellular compartments, like the lysosomes, endoplasmic reticulum, Golgi apparatus, and nucleus. Furthermore, we generated a cytotransmab that co-localized with the targeted cytosolic protein when it was incubated with living cells, demonstrating that the cytotransmab can directly target cytosolic proteins. Internalized cytotransmabs did not show any noticeable cytotoxicity and remained in the cytosol for more than 6 h before being degraded by proteosomes. These results suggest that cytotransmabs, which efficiently enter living cells and reach the cytosolic space, will find widespread uses as research, diagnostic, and therapeutic agents.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Citosol/metabolismo , Endocitosis , Inmunoglobulina G/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/genética , Células CHO , Línea Celular Tumoral , Supervivencia Celular , Cricetinae , Cricetulus , Células HT29 , Células HeLa , Humanos , Inmunoglobulina G/genética , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/metabolismo , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/metabolismo , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/metabolismo , Células K562 , Células MCF-7 , Microscopía Confocal , Datos de Secuencia Molecular , Ingeniería de Proteínas/métodos , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Imagen de Lapso de Tiempo/métodos
14.
PLoS One ; 7(12): e51813, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251631

RESUMEN

Cellular internalization of bacteriophage by surface-displayed cell penetrating peptides has been reported, though the underlying mechanism remains elusive. Here we describe in detail the internalization mechanism and intracellular trafficking and stability of filamentous M13 phages, the cellular entry of which is mediated by surface-displayed cell-penetrating light chain variable domain 3D8 VL transbody (3D8 VL-M13) or TAT peptide (TAT-M13). Recombinant 3D8 VL-M13 and TAT-M13 phages were efficiently internalized into living mammalian cells via physiologically relevant, energy-dependent endocytosis and were recovered from the cells in their infective form with the yield of 3D8 VL-M13 being higher (0.005 ≈ 0.01%) than that of TAT-M13 (0.001 ≈ 0.005%). Biochemical and genetic studies revealed that 3D8 VL-M13 was internalized principally by caveolae-mediated endocytosis via interaction with heparan sulfate proteoglycans as cell surface receptors, whereas TAT-M13 was internalized by clathrin- and caveolae-mediated endocytosis utilizing chondroitin sulfate proteoglycans as cell surface receptors, suggesting that phage internalization occurs by physiological endocytotic mechanism through specific cell surface receptors rather than non-specific transcytotic pathways. Internalized 3D8 VL-M13 phages routed to the cytosol and remained stable for more than 18 h without further trafficking to other subcellular compartments, whereas TAT-M13 phages routed to several subcellular compartments before being degraded in lysosomes even after 2 h of internalization. Our results suggest that the internalizing mechanism and intracellular trafficking of filamentous M13 bacteriophages largely follow the attributes of the displayed cell-penetrating moiety. Efficient internalization and cytosolic localization of 3D8 VL transbody-displayed phages will provide a useful tool for intracellular delivery of polar macromolecules such as proteins, peptides, and siRNAs.


Asunto(s)
Bacteriófago M13/metabolismo , Péptidos de Penetración Celular/metabolismo , Productos del Gen tat/metabolismo , Animales , Transporte Biológico/fisiología , Células CHO , Caveolas/metabolismo , Línea Celular Tumoral , Clatrina/metabolismo , Cricetinae , Endocitosis , Escherichia coli/metabolismo , Células HeLa , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA