Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Asia Pac J Public Health ; 36(6-7): 636-645, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39158019

RESUMEN

This study aimed to identify the rates of cigarette sales to underage youth and the factors associated with these sales using a mystery shopping technique. Of the convenience stores selling cigarettes in Seoul, South Korea, 2600 were sampled in 2019 and 2020. Personal and environmental factors were independent variables. Cigarette sales to underage youth were the outcome variable, defined as cases where a seller sold cigarettes to a youth shopper. A multiple logistic regression analysis was performed. Rates of cigarette sales to underage youth were 17.9% in 2019 and 16.3% in 2020, significantly higher when the seller was younger and the store was located in a central area. Administrative actions are needed to enforce strong warnings and training guidelines for convenience store sellers. Differentiation in surveillance intensity based on the location of convenience stores in Seoul is also recommended.


Asunto(s)
Comercio , Productos de Tabaco , Humanos , Adolescente , Comercio/estadística & datos numéricos , Productos de Tabaco/estadística & datos numéricos , Productos de Tabaco/economía , Masculino , Femenino , Seúl , Niño , República de Corea
2.
Emerg Microbes Infect ; 13(1): 2294860, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38165394

RESUMEN

COVID-19 remains a major public health concern. Monoclonal antibodies have received emergency use authorization (EUA) for pre-exposure prophylaxis against COVID-19 among high-risk groups for treatment of mild to moderate COVID-19. In addition to recombinant biologics, engineered synthetic DNA-encoded antibodies (DMAb) are an important strategy for direct in vivo delivery of protective mAb. A DMAb cocktail was synthetically engineered to encode the immunoglobulin heavy and light chains of two different two different Fc-engineered anti-SARS-CoV-2 antibodies. The DMAbs were designed to enhance in vivo expression and delivered intramuscularly to cynomolgus and rhesus macaques with a modified in vivo delivery regimen. Serum levels were detected in macaques, along with specific binding to SARS-CoV-2 spike receptor binding domain protein and neutralization of multiple SARS-CoV-2 variants of concern in pseudovirus and authentic live virus assays. Prophylactic administration was protective in rhesus macaques against signs of SARS-CoV-2 (USA-WA1/2020) associated disease in the lungs. Overall, the data support further study of DNA-encoded antibodies as an additional delivery mode for prevention of COVID-19 severe disease. These data have implications for human translation of gene-encoded mAbs for emerging infectious diseases and low dose mAb delivery against COVID-19.


Asunto(s)
COVID-19 , Profilaxis Pre-Exposición , Animales , Macaca mulatta , COVID-19/prevención & control , SARS-CoV-2/genética , Anticuerpos Antivirales , Anticuerpos Monoclonales , Macaca fascicularis , ADN , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
3.
Mol Ther Oncolytics ; 28: 249-263, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36915911

RESUMEN

Glioblastoma multiforme (GBM) is among the most difficult cancers to treat with a 5-year survival rate less than 5%. An immunotherapeutic vaccine approach targeting GBM-specific antigen, EGFRvIII, previously demonstrated important clinical impact. However, immune escape variants were reported in the trial, suggesting that multivalent approaches targeting GBM-associated antigens may be of importance. Here we focused on multivalent in vivo delivery of synthetic DNA-encoded bispecific T cell engagers (DBTEs) targeting two GBM-associated antigens, EGFRvIII and HER2. We designed and optimized an EGFRvIII-DBTE that induced T cell-mediated cytotoxicity against EGFRvIII-expressing tumor cells. In vivo delivery in a single administration of EGFRvIII-DBTE resulted in durable expression over several months in NSG mice and potent tumor control and clearance in both peripheral and orthotopic animal models of GBM. Next, we combined delivery of EGFRvIII-DBTEs with an HER2-targeting DBTE to treat heterogeneous GBM tumors. In vivo delivery of dual DBTEs targeting these two GBM-associated antigens exhibited enhanced tumor control and clearance in a heterogeneous orthotopic GBM challenge, while treatment with single-target DBTE ultimately allowed for tumor escape. These studies support that combined delivery of DBTEs, targeting both EGFRvIII and HER2, can potentially improve outcomes of GBM immunotherapy, and such multivalent approaches deserve additional study.

4.
Cells ; 12(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37174743

RESUMEN

Genetically modified (GM) mice are essential tools in biomedical research. Traditional methods for generating GM mice are expensive and require specialized personnel and equipment. The use of clustered regularly interspaced short palindromic repeats (CRISPR) coupled with improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) has highly increased the feasibility of producing GM mice in research laboratories. However, genetic modification in inbred mouse strains of interest such as C57BL/6 (B6) is still challenging because of their low fertility and embryo fragility. We have successfully generated multiple novel GM mouse strains in the B6 background while attempting to optimize i-GONAD. We found that i-GONAD reduced the litter size in superovulated pregnant females but did not impact pregnancy rates. Natural mating or low-hormone dose did not increase the low fertility rate observed in superovulated B6 females. However, diet enrichment had a positive effect on pregnancy success. We also optimized breeding conditions to increase the survival of small litters by co-housing i-GONAD-treated pregnant B6 females with synchronized pregnant FVB/NJ companion mothers. Thus, GM mice generation was increased by an enriched diet and shared pup rearing with highly fertile females such as FVB/NJ. In the present study, we generated 16 GM mice using a CRISPR/Cas system to target individual and multiple loci simultaneously or consecutively. We also compared homology-directed repair efficiency using different methods for LoxP insertion for conditional knockout mouse production. We found that a two-step serial LoxP insertion, in which each LoxP sequence was inserted individually in different i-GONAD procedures, was a low-risk high-efficiency method for generating floxed mice.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Embarazo , Femenino , Humanos , Ratones , Animales , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Ratones Endogámicos C57BL , Oviductos , Ratones Noqueados , Gónadas
5.
Nat Commun ; 13(1): 5886, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202799

RESUMEN

Monoclonal antibody therapy has played an important role against SARS-CoV-2. Strategies to deliver functional, antibody-based therapeutics with improved in vivo durability are needed to supplement current efforts and reach underserved populations. Here, we compare recombinant mAbs COV2-2196 and COV2-2130, which compromise clinical cocktail Tixagevimab/Cilgavimab, with optimized nucleic acid-launched forms. Functional profiling of in vivo-expressed, DNA-encoded monoclonal antibodies (DMAbs) demonstrated similar specificity, broad antiviral potency and equivalent protective efficacy in multiple animal challenge models of SARS-CoV-2 prophylaxis compared to protein delivery. In PK studies, DNA-delivery drove significant serum antibody titers that were better maintained compared to protein administration. Furthermore, cryo-EM studies performed on serum-derived DMAbs provide the first high-resolution visualization of in vivo-launched antibodies, revealing new interactions that may promote cooperative binding to trimeric antigen and broad activity against VoC including Omicron lineages. These data support the further study of DMAb technology in the development and delivery of valuable biologics.


Asunto(s)
Productos Biológicos , COVID-19 , Ácidos Nucleicos , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/prevención & control , ADN , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
6.
ACS Pharmacol Transl Sci ; 4(4): 1349-1361, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34396059

RESUMEN

Coronavirus disease 2019 (COVID-19) is caused by the newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the highly contagious nature of SARS-CoV-2, it has infected more than 137 million individuals and caused more than 2.9 million deaths globally as of April 13, 2021. There is an urgent need to develop effective novel therapeutic strategies to treat or prevent this infection. Toward this goal, we focused on the development of monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike glycoprotein (SARS-CoV-2 Spike) present on the surface of virus particles as well as virus-infected cells. We isolated anti-SARS-CoV-2 Spike mAbs from animals immunized with a DNA vaccine. We then selected a highly potent set of mAbs against SARS-CoV-2 Spike protein and evaluated each candidate for their expression, target binding affinity, and neutralization potential using complementary ACE2-blocking and pseudovirus neutralization assays. We identified a total of 10 antibodies, which specifically and strongly bound to SARS-CoV-2 Spike, blocked the receptor binding domain (RBD) and angiotensin-converting enzyme 2 (ACE2) interaction, and neutralized SARS-CoV-2. Furthermore, the glycomic profile of the antibodies suggested that they have high Fc-mediated effector functions. These antibodies should be further investigated for elucidating the neutralizing epitopes on Spike for the design of next-generation vaccines and for their potential in diagnostic as well as therapeutic utilities against SARS-CoV-2.

7.
iScience ; 24(7): 102699, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34124612

RESUMEN

More than 100 million people have been infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Common laboratory mice are not susceptible to wild-type SARS-CoV-2 infection, challenging the development and testing of effective interventions. Here, we describe the development and testing of a mouse model for SARS-CoV-2 infection based on transduction of the respiratory tract of laboratory mice with an adeno-associated virus vector (AAV6) expressing human ACE-2 (AAV6.2FF-hACE2). We validated this model using a previously described synthetic DNA vaccine plasmid, INO-4800 (pS). Intranasal instillation of AAV6.2FF-hACE2 resulted in robust hACE2 expression in the respiratory tract. pS induced robust cellular and humoral responses. Vaccinated animals were challenged with 105 TCID50 SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) and euthanized four days post-challenge to assess viral load. One immunization resulted in 50% protection and two immunizations were completely protective. Overall, the AAV6.2FF-hACE2 mouse transduction model represents an easily accessible, genetically diverse mouse model for wild-type SARS-CoV-2 infection and preclinical evaluation of potential interventions.

8.
Cell Rep Med ; 2(10): 100420, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34604818

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has had a dramatic global impact on public health and social and economic infrastructures. Here, we assess the immunogenicity and anamnestic protective efficacy in rhesus macaques of an intradermal (i.d.)-delivered SARS-CoV-2 spike DNA vaccine, INO-4800, currently being evaluated in clinical trials. Vaccination with INO-4800 induced T cell responses and induced spike antigen and RBD binding antibodies with ADCP and ADCD activity. Sera from the animals neutralized both the D614 and G614 SARS-CoV-2 pseudotype viruses. Several months after vaccination, animals were challenged with SARS-CoV-2 resulting in rapid recall of anti-SARS-CoV-2 spike protein T cell and neutralizing antibody responses. These responses were associated with lower viral loads in the lung. These studies support the immune impact of INO-4800 for inducing both humoral and cellular arms of the adaptive immune system, which are likely important for providing durable protection against COVID-19 disease.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Pulmón/virología , Linfocitos T/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Vacunas contra la COVID-19/uso terapéutico , Femenino , Inyecciones Intradérmicas , Macaca mulatta , Masculino , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/uso terapéutico , Carga Viral
9.
J Phys Condens Matter ; 32(4): 045702, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31597126

RESUMEN

The d1T-MoS2, distorted-1T group-VIB transition metal dichalcogenides monolayer, is considered as promising atomically thin out-of-plane ferroelectric materials. We study the origin of the ferroelectricity in d1T-MoS2 monolayer using first-principles calculations and the Landau theory of phase transition. In contrast to conventional improper ferroelectrics, we find that the polarization has dependence on both primary and secondary modes. It turns out that the charge imbalance between chalcogen atoms at different symmetry sites is the source for the out-of-plane polarization without any out-of-plane displacement in the primary mode. The secondary mode following the primary mode cancels partially the polarization and secures it against the depolarization field. We show that the polarization of d1T-MoS2 is robust to external electric fields and can be manipulated by the uniaxial strain.

10.
Nat Commun ; 11(1): 2601, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32433465

RESUMEN

The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen of coronaviruses, which is currently in clinical study. Here we build on this prior experience to generate a synthetic DNA-based vaccine candidate targeting SARS-CoV-2 S protein. The engineered construct, INO-4800, results in robust expression of the S protein in vitro. Following immunization of mice and guinea pigs with INO-4800 we measure antigen-specific T cell responses, functional antibodies which neutralize the SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and biodistribution of SARS-CoV-2 targeting antibodies to the lungs. This preliminary dataset identifies INO-4800 as a potential COVID-19 vaccine candidate, supporting further translational study.


Asunto(s)
Antígenos Virales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/química , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Mapeo Epitopo , Cobayas , Inmunidad Humoral , Inmunoglobulina G/inmunología , Pulmón/inmunología , Ratones , Ratones Endogámicos BALB C , Coronavirus del Síndrome Respiratorio de Oriente Medio , Modelos Animales , Peptidil-Dipeptidasa A/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Vacunas Virales/química
11.
J Phys Condens Matter ; 30(10): 105403, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29457586

RESUMEN

Group-VIIB transition metal dichalcogenides (TMDCs) are known to be stabilized solely in a distorted 1T phase termed as 1T″ phase, which is compared to many stable or metastable phases in other TMDCs. Using first-principles calculations, we study the structural origin of 1T″ phase group-VIIB TMDCs. We find that quasi 1D Peierls-like instability is responsible for the transition to the 1T″ phase ReS2 monolayer from the 1T' phase, another distorted 1T phase. Two half-filled bands in 1T'-ReS2 make sharp peaks in the Lindhard function that prompt the charge density wave (CDW) phase with large band gap opening. Our calculations show that overlapping of the two bands in a broad energy range leads to robust CDW phase or stable 1T″ phase in group-VIIB TMDCs against compositional variation, which is in stark contrast to typical Peierls instability driven by a single band. Calculated total energy curve near the critical point exhibits the feature of the first-order Landau transition due to local chemical bonding. The structural stability of the 1T″ phase in group-VIIB TMDCs is thus guaranteed by two half-filled bands and local chemical bonding.

12.
J Microbiol Biotechnol ; 23(12): 1664-72, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24018968

RESUMEN

In Salmonella enterica serovar Typhimurium, many genes encoded within Salmonella pathogenicity island 1 (SPI1) are required to induce intestinal/diarrheal disease. In this study, we compared the expression of four SPI1 genes (hilA, invF, prgH, and sipC) under shaking and standing culture conditions and found that the expression of these genes was highest during the transition from the exponential to stationary phase under shaking conditions. To identify regulators associated with the stationary phase-dependent activation of SPI1, the effects of selected regulatory genes, including relA/spoT (ppGpp), luxS, ihfB, hfq, and arcA, on the expression of hilA and invF were compared under shaking conditions. Mutations in the hfq and arcA genes caused a reduction in hilA and invF expression (more than 2-fold) in the early stationary phase only, whereas the lack of ppGpp and IHF decreased hilA and invF gene expression during the entire stationary phase. We also found that hfq and arcA mutations caused a reduction of hilD expression upon entry into the stationary phase under shaking culture conditions. Taken together, these results suggest that Hfq and ArcA regulate the hilD promoter, causing an accumulation of HilD, which can trigger a stationary phase-dependent activation of SPI1 genes under shaking culture conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Proteína de Factor 1 del Huésped/metabolismo , Proteínas Represoras/metabolismo , Salmonella typhimurium/genética , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Mutación , Proteínas Represoras/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA