RESUMEN
Objective: To investigate the effects of foot sole insensitivity on the outcomes of the triceps surae muscle H-reflex and functional gait. Material and Methods: People with peripheral neuropathy were recruited and divided into two groups: people with more (n = 13, 73.3 ± 4.3 years old) or less (n = 10, 73.5 ± 5.3) sensitive tactile sensation. Their monofilament testing scores were 9.0 ± 1.5 (range: 7-10) and 2.3 ± 2.4 (range: 0-6) out of 10, respectively. H-reflex of the triceps surae muscles during quiet standing and their relationship with functional gait, 6 min walking distance (6MWD), and timed-up-and-go duration (TUG), were compared between groups. Results: No significant difference was detected for H-reflex parameters between the groups. The less sensitive group showed reduced (p < .05) functional gait capacity compared to the other group, 38.4 ± 52.7 vs. 463.5 ± 47.6 m for 6MWD, and 9.0 ± 1.5 vs. 7.2 ± 1.1s for TUG, respectively. A significant correlation (p < .05), worse functional gait related to greater H/M ratio, was observed in the less sensitive group, not the other group. Conclusion: Although there was no significant H-reflex difference between the groups, more pronounced tactile sensation degeneration affected functional gaits and their relationship with H-reflex.
RESUMEN
Purpose: The project was to examine the influence of peripheral neuropathy (PN) severity on the relationship between Hoffmann-reflex (H-reflex) and postures. Methods: A total of 34 participants were recruited. H-reflex (H/M ratio and H-index) during prone, standing, and the heel-contact phase of walking was tested, along with foot sole sensitivity. Results: The participants were divided into three groups based on the severity of the foot sole sensitivity deficit: control, less (LA), and more (MA) affected with both feet 5.07 monofilament test scores ranging 10, 0-5, and 6-9, respectively. A significant group by the posture interaction was observed in the H/M ratio (F3.0, 41.9 = 2.904, p = 0.046, η p 2 = 0.172). In the control group, the H/M ratio of prone (22 ± 7%) was greater than that of the standing (13 ± 3%, p = 0.013) and heel-contact phase (10 ± 2%, p = 0.004). In the MA group, the H/M ratio of standing (13 ± 3%) was greater than that of the heel-contact phase (8 ± 2%, p = 0.011). The H-index was significantly different among groups (F2,28 = 5.711, p = 0.008, and η p 2 = 0.290). Post hoc analysis showed that the H-index of the control group (80.6 ± 11.3) was greater than that of the LA (69.8 ± 12.1, p = 0.021) and MA groups (62.0 ± 10.6, p = 0.003). Conclusion: In a non-PN population, the plantar sensory input plays an important role in maintaining standing postural control, while as for the PN population with foot sole sensitivity deficiency, type â afferent fibers reflex loop (H-reflex) contributes more to the standing postural control. The H-index parameter is an excellent method to recognize the people with and without PN but not to distinguish the severity of PN with impaired foot sole sensitivity.
RESUMEN
Introduction: Peripheral neuropathy (PN) affects up to 20% of the population over the age of 60. Hoffmann reflex (H-reflex) may assess PN adaptation by measuring the function of the peripheral neural system and central nervous system (CNS) modulation. This project aimed to find a reliable muscle among triceps surae muscles during standing and walking among the PN population. Materials and Methods: Sixteen older adults (> 65 years of age) diagnosed with PN were recruited in this study. The H-reflex test was conducted on the muscle belly of the soleus (SOL), the medial (MG), and lateral gastrocnemius (LG) during standing and walking (heel contact, midstance, and toe-off phases). All measurements were collected on two occasions, separated by at least 7 days. Intraclass correlation coefficients (ICCs) and their confidence intervals (CIs) were used to examine the consistency of the H-reflex outcome variables in the repeated tests for all three tested muscles. Results: The ICCs of H-index during standing and the three walking phases were poor to moderate in SOL (0.486â¼0.737) and MG (0.221â¼0.768), and moderate to high in LG (0.713â¼0.871). The ICCs of H/M ratio were poor to moderate in SOL (0.263â¼0.702) and MG (0.220â¼0.733), and high in LG (0.856â¼0.958). Conclusion: The H-reflex of LG was more reliable than SOL and MG during standing and walking among older adults with peripheral neuropathy. It is crucial for future studies in this population to study H-reflex of LG, not SOL and MG, for more reliable results.
RESUMEN
We report on the electric field dependent carrier dynamics and optical absorption in nonpolar a-plane GaN-based quantum heterostructures grown on r-plane sapphire, which are surprisingly observed to be opposite to those polar ones of the same materials system and similar structure grown on c-plane. Confirmed by their time-resolved photoluminescence measurements and numerical analyses, we show that carrier lifetimes increase with increasing external electric field in nonpolar InGaN/GaN heterostructure epitaxy, whereas exactly the opposite occurs for the polar epitaxy. Moreover, we observe blue-shifting absorption spectra with increasing external electric field as a result of reversed quantum confined Stark effect in these polar structures, while we observe red-shifting absorption spectra with increasing external electric field because of standard quantum confined Stark effect in the nonpolar structures. We explain these opposite behaviors of external electric field dependence with the changing overlap of electron and hole wavefunctions in the context of Fermi's golden rule.
RESUMEN
In this study, the disk type of a thermal barrier coating (TBC) system for a gas turbine blade was isothermally aged at 1100 degrees C for various times up to 400 hours. For each aging condition, the thickness of the thermally grown oxide (TGO) was measured by optical microscope and mechanical properties such as the elastic modulus and hardness were measured by micro-indentation and nano-indentation on the cross-section of a coating specimen. In the case of micro-indentation, the mechanical properties of a Ni-base superalloy substrate and MCrAlY bond coat material did not significantly change with an increase in exposure time. In the case of nano-indentation, the gamma-Ni phase and beta-NiAl phase in the bond coat and top coat material show no significant change in their properties. However, the elastic modulus and the hardness of TGO show a remarkable decrease from 100 h to 200 h then remain nearly constant after 200 h due to the internal delamination of TBC. It has been confirmed that the nano-indentation technique is a very effective way to evaluate the degradation of a thermal barrier coating system.
RESUMEN
AIM: This study evaluates tissue injury, which results from electrosurgical ablation, by correlating lesion depth to tissue impedance, and introduces a newly developed real-time feedback control system that can be applied for preventing excessive tissue injury. Although some previous studies had evaluated such tissue injuries in other ways, a specific mechanism is necessary to actually prevent excessive tissue injury. MATERIALS AND METHODS: Ablation tests were performed by using an impedance bridge circuit and gel block that have been developed in two previous studies. Depth of the ablation site was measured with the use of a laser displacement measurement device. To simplify the programing work, voltage was used, as a substitution of tissue impedance, to evaluate tissue injury. RESULTS: The depth of the ablation site was found to increase with either increased power setting or ablation duration, and the depth was analyzed to investigate correlation with measured voltage. The real-time feedback control system was developed by achieving communication between LabVIEW and an Arduino microcontroller. CONCLUSION: It is concluded that the depth of the ablation site modestly correlates with the measured voltage under specific conditions, and the newly developed system fulfills the goal of the design.
RESUMEN
BACKGROUND: The most common cutaneous malignant masses are basal cell carcinoma (BCC) and squamous cell carcinoma. The predominant site of a malignant mass is the face, which has many opportunities to be exposed to ultraviolet radiation. However the predilection sites of malignant masses have been equivocal due to the use of general regions, rather than anatomical landmarks, in surveys. A facial esthetic unit is an anatomical site classified as an area of similar facial contour characteristics that can be distinguished from other areas. The purpose of this study is to determine widely accepted anatomical landmarks using the esthetic unit. METHODS: We retrospectively analyzed 118 cases of malignant masses in our clinic from January 2005 to October 2012. We evaluated the patients' age, gender, and predilection site of the malignant mass by esthetic unit through pathology, medical records and patient photographs. We mapped the occurrence site of the malignant mass on schematic drawings of the esthetic units. RESULTS: Most of the malignant masses were BCC. The ratio of males to females was 1:1.41. The frequent predilection site of a malignant mass was on the nasal unit (33.1%), followed by the buccal unit (11.0%). Primary closure was the most common method of repairing a surgical defect (38.9%), followed by a local flap (35.5%). CONCLUSIONS: This review described the relationship between clinical characteristics and esthetic units by proposing objective predilection sites for malignant masses, which can be used commonly as a framework in the study of malignant masses by unifying equivocal occurrence sites.