Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Blood ; 117(14): e109-19, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21296996

RESUMEN

Reprogramming blood cells to induced pluripotent stem cells (iPSCs) provides a novel tool for modeling blood diseases in vitro. However, the well-known limitations of current reprogramming technologies include low efficiency, slow kinetics, and transgene integration and residual expression. In the present study, we have demonstrated that iPSCs free of transgene and vector sequences could be generated from human BM and CB mononuclear cells using non-integrating episomal vectors. The reprogramming described here is up to 100 times more efficient, occurs 1-3 weeks faster compared with the reprogramming of fibroblasts, and does not require isolation of progenitors or multiple rounds of transfection. Blood-derived iPSC lines lacked rearrangements of IGH and TCR, indicating that their origin is non-B- or non-T-lymphoid cells. When cocultured on OP9, blood-derived iPSCs could be differentiated back to the blood cells, albeit with lower efficiency compared to fibroblast-derived iPSCs. We also generated transgene-free iPSCs from the BM of a patient with chronic myeloid leukemia (CML). CML iPSCs showed a unique complex chromosomal translocation identified in marrow sample while displaying typical embryonic stem cell phenotype and pluripotent differentiation potential. This approach provides an opportunity to explore banked normal and diseased CB and BM samples without the limitations associated with virus-based methods.


Asunto(s)
Células de la Médula Ósea/fisiología , Neoplasias de la Médula Ósea/patología , Reprogramación Celular/fisiología , Sangre Fetal/citología , Células Madre Pluripotentes Inducidas/fisiología , Leucocitos Mononucleares/fisiología , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Técnicas de Cultivo de Célula/métodos , Desdiferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/genética , Técnicas de Cocultivo/métodos , Eficiencia , Sangre Fetal/metabolismo , Sangre Fetal/fisiología , Perfilación de la Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Ratones , Análisis por Micromatrices , Transgenes/fisiología
2.
Stem Cells ; 27(3): 559-67, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19259936

RESUMEN

Induced pluripotent stem cells (iPSCs) provide an unprecedented opportunity for modeling of human diseases in vitro, as well as for developing novel approaches for regenerative therapy based on immunologically compatible cells. In this study, we employed an OP9 differentiation system to characterize the hematopoietic and endothelial differentiation potential of seven human iPSC lines obtained from human fetal, neonatal, and adult fibroblasts through reprogramming with POU5F1, SOX2, NANOG, and LIN28 and compared it with the differentiation potential of five human embryonic stem cell lines (hESC, H1, H7, H9, H13, and H14). Similar to hESCs, all iPSCs generated CD34(+)CD43(+) hematopoietic progenitors and CD31(+)CD43(-) endothelial cells in coculture with OP9. When cultured in semisolid media in the presence of hematopoietic growth factors, iPSC-derived primitive blood cells formed all types of hematopoietic colonies, including GEMM colony-forming cells. Human induced pluripotent cells (hiPSCs)-derived CD43(+) cells could be separated into the following phenotypically defined subsets of primitive hematopoietic cells: CD43(+)CD235a(+)CD41a(+/-) (erythro-megakaryopoietic), lin(-)CD34(+)CD43(+)CD45(-) (multipotent), and lin(-)CD34(+)CD43(+)CD45(+) (myeloid-skewed) cells. Although we observed some variations in the efficiency of hematopoietic differentiation between different hiPSCs, the pattern of differentiation was very similar in all seven tested lines obtained through reprogramming of human fetal, neonatal, or adult fibroblasts with three or four genes. Although several issues remain to be resolved before iPSC-derived blood cells can be administered to humans for therapeutic purposes, patient-specific iPSCs can already be used for characterization of mechanisms of blood diseases and for identification of molecules that can correct affected genetic networks.


Asunto(s)
Diferenciación Celular/fisiología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Sistema Hematopoyético/citología , Sistema Hematopoyético/metabolismo , Células Madre Pluripotentes/citología , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Humanos , Leucosialina/metabolismo , Células Madre Pluripotentes/metabolismo
3.
Nat Biotechnol ; 38(3): 297-302, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32094659

RESUMEN

The scarcity of donor organs may be addressed in the future by using pigs to grow humanized organs with lower potential for immunological rejection after transplantation in humans. Previous studies have demonstrated that interspecies complementation of rodent blastocysts lacking a developmental regulatory gene can generate xenogeneic pancreas and kidney1,2. However, such organs contain host endothelium, a source of immune rejection. We used gene editing and somatic cell nuclear transfer to engineer porcine embryos deficient in ETV2, a master regulator of hematoendothelial lineages3-7. ETV2-null pig embryos lacked hematoendothelial lineages and were embryonic lethal. Blastocyst complementation with wild-type porcine blastomeres generated viable chimeric embryos whose hematoendothelial cells were entirely donor-derived. ETV2-null blastocysts were injected with human induced pluripotent stem cells (hiPSCs) or hiPSCs overexpressing the antiapoptotic factor BCL2, transferred to synchronized gilts and analyzed between embryonic day 17 and embryonic day 18. In these embryos, all endothelial cells were of human origin.


Asunto(s)
Blastómeros/citología , Embrión de Mamíferos/metabolismo , Endotelio/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Factores de Transcripción/deficiencia , Animales , Blastómeros/metabolismo , Células Cultivadas , Desarrollo Embrionario , Endotelio/citología , Edición Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Técnicas de Transferencia Nuclear , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Porcinos
4.
J Stem Cells Regen Med ; 13(2): 75-79, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29391752

RESUMEN

Human embryonic stem cell (hESC)-derived hematopoietic stem/progenitor cells hold tremendous potential as alternative cell sources for the treatment of various hematological diseases, drug discovery and toxicological screening. However, limited number of hematopoietic stem/progenitor cells generated from the differentiation of hESCs hinders their downstream applications. Here, we show that aryl hydrocarbon receptor antagonist StemRegenin 1 (SR1) selectively promotes expansion of hESC-derived lin-CD34+ hematopoietic progenitors in a concentration-dependent manner. The colony-forming cell (CFC) activity was found to be enriched in the CD34+ cells that were expanded with SR1; however, these cells have less colony-forming activity as compared to unexpanded cells (1,338 vs. 7 of CD34+ cells to form 1 colony, respectively). Interestingly, SR1 showed a bipotential effect on the proliferation of CD34 negative population, that is low dose of SR1 (1 µM) enhanced cell proliferation, whereas it was repressed at higher doses (>5 µM). In summary, our results suggest that SR1 has the potential to facilitate expansion of hESC-derived lin-CD34+ hematopoietic progenitors, which further retain the potential to form multilineage hematopoietic colonies.

5.
Cell Rep ; 2(3): 553-67, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22981233

RESUMEN

Hemogenic endothelium (HE) has been recognized as a source of hematopoietic stem cells (HSCs) in the embryo. Access to human HE progenitors (HEPs) is essential for enabling the investigation of the molecular determinants of HSC specification. Here, we show that HEPs capable of generating definitive hematopoietic cells can be obtained from human pluripotent stem cells (hPSCs) and identified precisely by a VE-cadherin(+)CD73(-)CD235a/CD43(-) phenotype. This phenotype discriminates true HEPs from VE-cadherin(+)CD73(+) non-HEPs and VE-cadherin(+)CD235a(+)CD41a(-) early hematopoietic cells with endothelial and FGF2-dependent hematopoietic colony-forming potential. We found that HEPs arise at the post-primitive-streak stage of differentiation directly from VE-cadherin-negative KDR(bright)APLNR(+)PDGFRα(low/-) hematovascular mesodermal precursors (HVMPs). In contrast, hemangioblasts, which are capable of forming endothelium and primitive blood cells, originate from more immature APLNR(+)PDGFRα(+) mesoderm. The demarcation of HEPs and HVMPs provides a platform for modeling blood development from endothelium with a goal of facilitating the generation of HSCs from hPSCs.


Asunto(s)
Diferenciación Celular/fisiología , Hemangioblastos/metabolismo , Células Madre Pluripotentes/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Línea Celular , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Pluripotentes/citología
6.
Nat Protoc ; 6(3): 296-313, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21372811

RESUMEN

In this paper, we describe a protocol for hematopoietic differentiation of human pluripotent stem cells (hPSCs) and generation of mature myeloid cells from hPSCs through expansion and differentiation of hPSC-derived lin(-)CD34(+)CD43(+)CD45(+) multipotent progenitors. The protocol comprises three major steps: (i) induction of hematopoietic differentiation by coculture of hPSCs with OP9 bone marrow stromal cells; (ii) short-term expansion of multipotent myeloid progenitors with a high dose of granulocyte-macrophage colony-stimulating factor; and (iii) directed differentiation of myeloid progenitors into neutrophils, eosinophils, dendritic cells, Langerhans cells, macrophages and osteoclasts. The generation of multipotent hematopoietic progenitors from hPSCs requires 9 d of culture and an additional 2 d to expand myeloid progenitors. Differentiation of myeloid progenitors into mature myeloid cells requires an additional 5-19 d of culture with cytokines, depending on the cell type.


Asunto(s)
Diferenciación Celular , Células Progenitoras Mieloides/metabolismo , Células Madre Pluripotentes/metabolismo , Células del Estroma/metabolismo , Técnicas de Cocultivo/métodos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Hematopoyesis/fisiología , Humanos , Células Progenitoras Mieloides/citología , Células Madre Pluripotentes/citología , Células del Estroma/citología , Factores de Tiempo
7.
J Clin Invest ; 119(9): 2818-29, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19726877

RESUMEN

Basic research into human mature myelomonocytic cell function, myeloid lineage diversification and leukemic transformation, and assessment of myelotoxicity in preclinical drug development requires a constant supply of donor blood or bone marrow samples and laborious purification of mature myeloid cells or progenitors, which are present in very small quantities. To overcome these limitations, we have developed a protocol for efficient generation of neutrophils, eosinophils, macrophages, osteoclasts, DCs, and Langerhans cells from human embryonic stem cells (hESCs). As a first step, we generated lin-CD34+CD43+CD45+ hematopoietic cells highly enriched in myeloid progenitors through coculture of hESCs with OP9 feeder cells. After expansion in the presence of GM-CSF, these cells were directly differentiated with specific cytokine combinations toward mature cells of particular types. Morphologic, phenotypic, molecular, and functional analyses revealed that hESC-derived myelomonocytic cells were comparable to their corresponding somatic counterparts. In addition, we demonstrated that a similar protocol could be used to generate myelomonocytic cells from induced pluripotent stem cells (iPSCs). This technology offers an opportunity to generate large numbers of patient-specific myelomonocytic cells for in vitro studies of human disease mechanisms as well as for drug screening.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Antígenos CD34/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Células Madre Embrionarias/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Antígenos Comunes de Leucocito/metabolismo , Leucosialina/metabolismo , Células Mieloides/efectos de los fármacos , Fenotipo , Células Madre Pluripotentes/efectos de los fármacos , Proteínas Recombinantes
8.
J Immunol ; 176(5): 2924-32, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16493050

RESUMEN

We have established a system for directed differentiation of human embryonic stem (hES) cells into myeloid dendritic cells (DCs). As a first step, we induced hemopoietic differentiation by coculture of hES cells with OP9 stromal cells, and then, expanded myeloid cells with GM-CSF using a feeder-free culture system. Myeloid cells had a CD4+CD11b+CD11c+CD16+CD123(low)HLA-DR- phenotype, expressed myeloperoxidase, and included a population of M-CSFR+ monocyte-lineage committed cells. Further culture of myeloid cells in serum-free medium with GM-CSF and IL-4 generated cells that had typical dendritic morphology; expressed high levels of MHC class I and II molecules, CD1a, CD11c, CD80, CD86, DC-SIGN, and CD40; and were capable of Ag processing, triggering naive T cells in MLR, and presenting Ags to specific T cell clones through the MHC class I pathway. Incubation of DCs with A23187 calcium ionophore for 48 h induced an expression of mature DC markers CD83 and fascin. The combination of GM-CSF with IL-4 provided the best conditions for DC differentiation. DCs obtained with GM-CSF and TNF-alpha coexpressed a high level of CD14, and had low stimulatory capacity in MLR. These data clearly demonstrate that hES cells can be used as a novel and unique source of hemopoietic and DC precursors as well as DCs at different stages of maturation to address essential questions of DC development and biology. In addition, because ES cells can be expanded without limit, they can be seen as a potential scalable source of cells for DC vaccines or DC-mediated induction of immune tolerance.


Asunto(s)
Diferenciación Celular/fisiología , Células Dendríticas/citología , Células Mieloides/citología , Células Mieloides/fisiología , Transducción de Señal/inmunología , Células Madre/citología , Animales , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/inmunología , Embrión de Mamíferos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Humanos , Ratones , Células Mieloides/metabolismo , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA