Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(28): e2308821, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38308357

RESUMEN

The branched network-driven ion solvating quasi-solid polymer electrolytes (QSPEs) are prepared via one-step photochemical reaction. A poly(ethylene glycol diacrylate) (PEGDA) is combined with an ion-conducting solvate ionic liquid (SIL), where tetraglyme (TEGDME), which acts like interneuron in the human brain and creates branching network points, is mixed with EMIM-NTf2 and Li-NTf2. The QSPE exhibits a unique gyrified morphology, inspired by the cortical surface of human brain, and features well-refined nano-scale ion channels. This human-mimicking method offers excellent ion transport capabilities through a synaptic branched network with high ionic conductivity (σDC ≈ 1.8 mS cm-1 at 298 K), high dielectric constant (εs ≈ 125 at 298 K), and strong ion solvation ability, in addition to superior mechanical flexibility. Furthermore, the interdigitated microsupercapacitors (MSCs) based on the QSPE present excellent electrochemical performance of high energy (E  =  5.37 µWh cm-2) and power density (P  =  2.2 mW cm-2), long-term cycle stability (≈94% retention after 48 000 cycles), and mechanical stability (>94% retention after continuous bending and compressing deformation). Moreover, these MSC devices have flame-retarding properties and operate effectively in air and water across a wide temperature range (275 to 370 K), offering a promising foundation for high-performance, stable next-generation all-solid-state energy storage devices.

2.
ACS Appl Mater Interfaces ; 16(20): 26004-26014, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728621

RESUMEN

Two-dimensional (2D) transition metal carbides, known as MXenes, have captured much attention for their excellent electrical conductivity and electrochemical capability. However, the susceptibility of MXenes to oxidation, particularly Ti3C2Tx transforming into titanium dioxide upon exposure to ambient air, hinders their utilization for extended operational life cycles. This work introduces a simple and straightforward method for producing ultrathin MXene electrode films tailored for energy storage applications, employing centrifugal-gravity force. Our approach significantly suppresses the oxidation phenomenon that arises in MXene materials and also effectively prevents the recrystallization of potentially residual LiF during the film formation. Additionally, the utilization of this MXene electrode in an all-solid-state microsupercapacitor (MSC) with an interdigitated pattern demonstrates an exceptionally improved and stable electrochemical performance. This includes a high volumetric capacitance of approximately 467 F cm-3, an energy density of around 65 mWh cm-3, and impressive long-term cycle stability, retaining about 94% capacity after 10 000 cycles. Moreover, a downsized MSC device exhibits remarkable mechanical durability, retaining over 98% capacity even when folded and sustaining stability over extended periods. Therefore, we believe that this study provides valuable insights for advancing highly integrated energy storage devices, ensuring exceptional electrochemical efficiency and prolonged functionality in diverse environments, whether ambient or humid.

3.
ACS Appl Mater Interfaces ; 15(2): 3054-3068, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36621929

RESUMEN

Due to the lower cost and greater natural abundance of the sodium element on the earth than those of the lithium element, sodium-based ionic gel polymer electrolytes (IGPEs) are becoming a more cost-effective and popular material choice for portable and stationary energy solutions. The sodium-based IGPEs, however, appeared relatively inferior to their lithium-based counterparts for use in high-performance microsupercapacitors in terms of ionic conductivity and electrochemical stability. To tackle these issues, poly(ethylene glycol) diacrylate (PEGDA) with fast polymerization to build a polymer matrix and sodium perchlorate (NaClO4) with high chemical stability and high thermal stability are employed to generate free ions for an ionic conducting phase with the support of tetramethylene glycol ether (G4) and 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)imide (EMIM-TFSI). It was found that the ionic conductivity (σdc) of this sodium-based IGPE reaches up to 0.54 mS/cm at room temperature. To manifest a high-conductivity sodium-based IGPE (SIGPE), a microsupercapacitor (MSC) with an area of 5 mm2 is designed and fabricated on an interdigital reduced graphene oxide electrode. This MSC demonstrates prominent performance with a high power density of ∼2500 W/kg and a maximum energy density of ∼0.7 Wh/kg. Furthermore, after 20,000 cycles at an operating potential window from 0.0 to 1.0 V, it retains approximately 98.9% capacitance. An MSC array in 3 series × 3 parallels (3S × 3P) was successfully designed as a power source for a basic circuit with an LED. Therefore, we believe that our sodium-based IGPE microsupercapacitor holds its promising role as a solid-state energy source for high-performance and high-stability energy solutions.

4.
Adv Sci (Weinh) ; 10(32): e2303838, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37792271

RESUMEN

Soft robotics systems are currently under development using ionic electroactive polymers (i-EAP) as soft actuators for the human-machine interface. However, this endeavor has been impeded by the dilemma of reconciling the competing demands of force and strain in i-EAP actuators. Here, the authors present a novel design called "ions-silica percolated ionic dielectric elastomer (i-SPIDER)", which exhibits ionic liquid-confined silica microstructures that effectively resolve the chronic issue of conventional i-EAP actuators. The i-SPIDER actuator demonstrates remarkable electromechanical conversion capacity at low voltage, thanks to improved ion accumulation facilitated by interpreting electrode polarization at the electrolyte-electrode interface. This approach concurrently enhances both strain (by approximately 1.52%) and force (by roughly 1.06 mN) even at low Young's modulus (merely 5.9 MPa). Additionally, by demonstrating arachnid-inspired soft robots endowed with user-desired tasks through control of various form factors, the development of soft robots using the i-SPIDER that can concomitantly enhance strain and force holds promise as a compelling avenue for ushering in the next generation of miniaturized, low-powered soft robotics.

5.
Nat Commun ; 13(1): 3769, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773254

RESUMEN

Implementing self-healing capabilities in a deformable platform is one of the critical challenges for achieving future wearable electronics with high durability and reliability. Conventional systems are mostly based on polymeric materials, so their self-healing usually proceeds at elevated temperatures to promote chain flexibility and reduce healing time. Here, we propose an ion-cluster-driven self-healable ionoconductor composed of rationally designed copolymers and ionic liquids. After complete cleavage, the ionoconductor can be repaired with high efficiency (∼90.3%) within 1 min even at 25 °C, which is mainly attributed to the dynamic formation of ion clusters between the charged moieties in copolymers and ionic liquids. By taking advantages of the superior self-healing performance, stretchability (∼1130%), non-volatility (over 6 months), and ability to be easily shaped as desired through cutting and re-assembly protocol, reconfigurable, deformable light-emitting electroluminescent displays are successfully demonstrated as promising electronic platforms for future applications.

6.
RSC Adv ; 10(36): 21309-21317, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35518755

RESUMEN

Taking advantage of the triboelectrification effect and electrostatic induction, triboelectric nanogenerators (TENGs) provide a simple and efficient path to convert environmental mechanical energy into electric energy. Since the generation of surface charges and their density on triboelectric materials are the key factors in determining TENG performance, many efforts have been undertaken to engineer the structures and chemistry of triboelectric materials. Among others, dielectric control of triboelectric materials is an emerging approach because the dielectric constant is intimately correlated with the capacitance of materials. In this regard, we prepared porous polydimethylsiloxane (PDMS) composites decorated with Au nanoparticles (NPs), which was designed to engineer the compressibility and dielectric constant of PDMS elastomer. To this end, a polydopamine layer was synthesized on the PDMS surface to facilitate the homogeneous deposition of Au NPs. Unlike untreated PDMS sponges, Au NPs were efficiently coated onto polydopamine-treated PDMS sponges to increase the dielectric constant. When the resulting porous NP-PDMS composites were assembled into TENG devices, the electrical output of the TENGs initially improved but decreased with the amount of Au NPs. This trade-off relationship has been discussed in terms of charge generation on the air surface and pores of NP-PDMS composites based on a recent experimental model.

7.
ACS Appl Mater Interfaces ; 11(45): 42221-42232, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31613585

RESUMEN

To achieve both high structural integrity and excellent ion transport, designing ion gel polymer electrolytes (IGPEs) composed of an ionic conducting phase and a mechanical supporting polymer matrix is one of the promising material strategies for the development of next-generation all-solid-state energy storage systems. Herein, we prepared an IGPE thin film, in which an ion-diffusing phase containing ionic liquids and lithium salts was bicontinuously intertwined with a cross-linked epoxy phase, using a silicon elastomer-based stamping method, thus producing a homogeneous IGPE-based thin film with low surface roughness (Rrms = 0.5 nm). Following the optimization of the IGPE thin film in terms of the concentrations of ionic constituents, the film thickness, and various process parameters, the IGPE itself showed a high ionic conductivity of 0.23 mS/cm with a low activation energy for lithium-ion transport, as well as the high capacitance of approximately 10 µF/cm2 based on the metal-insulator-metal configuration. Furthermore, an all-solid-state supercapacitor containing two IGPE coating-activated carbon electrodes produced using our poly(dimethylsiloxane) (PDMS) stamping method exhibited high energy and power densities (44 W h/kg at 875 W/kg and 28 kW/kg at 3 W h/kg). It was also found that this supercapacitor showed a dramatic reduction (more than 50%) of the current-resistance (IR) drop, which is an indicator of low interface resistance, while maintaining the initial electrochemical performance even after severe mechanical deformation such as bending or rolling. Therefore, all these results support the fact that our developed PDMS stamping method enables the rendering of a high-performance ion gel polymer thin-film-based electrolyte with acceptable stability and mechanical flexibility for all-solid-state wearable energy storage devices.

8.
Sci Rep ; 9(1): 2463, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792420

RESUMEN

Hydrogels have been developed and applied to various biomedical applications due to their biocompatibility. However, understanding of modulation between cells to hydrogel interface is still unclear, and parameters to explain the interaction are not sophisticated enough. In this report, we studied the effect of polymer chain flexibility on cell adhesion to various hydrogel constructs of collagen and fibrin gels. Specifically, novel method of semi-flexible model-based analysis confirmed that chain flexibility mediated microstructure of the hydrogels is a critical factor for cell adhesion on their surfaces. The proposed analysis showed possibility of more accurate prediction of biocompatibility of hydrogels, and it should be considered as one of the important criteria for polymer design and selections for enhancing both biocompatibility and biofunctionality.


Asunto(s)
Materiales Biocompatibles/química , Células Endoteliales de la Vena Umbilical Humana/citología , Hidrogeles/química , Animales , Adhesión Celular , Colágeno/química , Módulo de Elasticidad , Fibrina/química , Humanos
9.
Nanomaterials (Basel) ; 8(7)2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29933616

RESUMEN

Directed-assembly of nanowires on the dielectrics-covered parallel electrode structure is capable of producing uniformly-spaced nanowire array at the electrode gap due to dielectrophoretic nanowire attraction and electrostatic nanowire repulsion. Beyond uniformly-spaced nanowire array formation, the control of spacing in the array is beneficial in that it should be the experimental basis of the precise positioning of functional nanowires on a circuit. Here, we investigate the material parameters and bias conditions to modulate the nanowire spacing in the ordered array, where the nanowire array formation is readily attained due to the electrostatic nanowire interaction. A theoretical model for the force calculation and the simulation of the induced charge in the assembled nanowire verifies that the longer nanowires on thicker dielectric layer tend to be assembled with a larger pitch due to the stronger nanowire-nanowire electrostatic repulsion, which is consistent with the experimental results. It was claimed that the stronger dielectrophoretic force is likely to attract more nanowires that are suspended in solution at the electrode gap, causing them to be less-spaced. Thus, we propose a generic mechanism, competition of dielectrophoretic and electrostatic force, to determine the nanowire pitch in an ordered array. Furthermore, this spacing-controlled nanowire array offers a way to fabricate the high-density nanodevice array without nanowire registration.

10.
Nat Commun ; 9(1): 5029, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487526

RESUMEN

The synthesis of high-conductivity solid-state electrolyte materials with eliminated polarization loss is a great challenge. Here we show a promising potential of single-ion block copolymers with crystalline protogenic channels as efficient proton conductors. Through the self-organization of zwitterion, imidazole, and polystyrene sulfonate with controlled dipolar interactions therein, the distance between neighboring proton donors and acceptors in ionic crystals, as well as the dipolar orientation in nanoscale ionic phases was precisely tuned. This allowed a markedly high static dielectric constant comparable to water and fast structural diffusion of protons with a low potential barrier for single-ion polymers. The optimized sample exhibited a high proton diffusion coefficient of 2.4 × 10-6 cm2 s-1 under anhydrous conditions at 90 °C.

11.
ACS Appl Mater Interfaces ; 10(41): 35108-35117, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30230315

RESUMEN

Solid polymer electrolytes (SPEs) have drawn attention for promising multifunctional electrolytes requiring very good mechanical properties and ionic conductivity. To develop a safe SPE for energy storage applications, mechanically robust cross-linked epoxy matrix is combined with fast ion-diffusing ionic liquid/lithium salt electrolyte (ILE) via a simple one-pot curing process. The epoxy-rich SPEs show higher Young's modulus ( E), with higher glass transition temperature ( Tg) but lower ionic conductivity (σdc) with a higher activation energy, compared to the ILE-rich SPEs. The incorporation of inorganic robust Al2O3 nanowire simultaneously provides excellent mechanical robustness ( E ≈ 1 GPa at 25 °C) and good conductivity (σdc ≈ 2.9 × 10-4 S/cm at 25 °C) to the SPE. This suggests that the SPE has a bicontinuous microphase separation into ILE-rich and epoxy-rich microdomain, where ILE continuous conducting phases are intertwined with a sturdy cross-linked amorphous epoxy framework, supported by the observation of the two Tgs and low tortuosity as well as the microstructural investigation. After assembling the SPE with activated carbon electrodes, we successfully demonstrate the supercapacitor performance, exhibiting high energy and power density (75 W h/kg at 382 W/kg and 9.3 kW/kg at 44 W h/kg). This facile strategy holds tremendous potential to advance multifunctional energy storage technology for next-generation electric vehicles.

12.
Nanomaterials (Basel) ; 7(10)2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29048363

RESUMEN

Placing nanowires at the predetermined locations on a substrate represents one of the significant hurdles to be tackled for realization of heterogeneous nanowire systems. Here, we demonstrate spatially-controlled assembly of a single nanowire at the photolithographically recessed region at the electrode gap with high integration yield (~90%). Two popular routes, such as protruding electrode tips and recessed wells, for spatially-controlled nanowire alignment, are compared to investigate long-range dielectrophoretic nanowire attraction and short-range nanowire-nanowire electrostatic interaction for determining the final alignment of attracted nanowires. Furthermore, the post-assembly process has been developed and tested to make a robust electrical contact to the assembled nanowires, which removes any misaligned ones and connects the nanowires to the underlying electrodes of circuit.

13.
Nat Commun ; 7: 13576, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27857067

RESUMEN

The key challenges in the advancement of actuator technologies related to artificial muscles include fast-response time, low operation voltages and durability. Although several researchers have tackled these challenges over the last few decades, no breakthrough has been made. Here we describe a platform for the development of soft actuators that moves a few millimetres under 1 V in air, with a superfast response time of tens of milliseconds. An essential component of this actuator is the single-ion-conducting polymers that contain well-defined ionic domains through the introduction of zwitterions; this achieved an exceptionally high dielectric constant of 76 and a 300-fold enhancement in ionic conductivity. Moreover, the actuator demonstrated long-term durability, with negligible changes in the actuator stroke over 20,000 cycles in air. Owing to its low-power consumption (only 4 mW), we believe that this actuator could pave the way for cutting-edge biomimetic technologies in the future.

14.
ACS Appl Mater Interfaces ; 8(5): 3215-25, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26735584

RESUMEN

Dielectric relaxation spectroscopy was used to investigate the segmental dynamics of a series of siloxane-based polar copolymers combining pendant cyclic carbonates and short poly(ethylene oxide) (PEO) chains. The homopolymer with cyclic carbonate as the only side chain exhibits higher glass transition temperature T(g) and dielectric constant ε(s) than the one with only PEO side chains. For their copolymers the observed T(g) (agreeing well with the predicted values from the Fox equation) and ε(s) decrease with increasing PEO side chain content. These polar polymers exhibit a glassy ß relaxation with Arrhenius character, attributed to local chain motions of side groups attached to the main chain, and a segmental α relaxation, associated with the glass transition with a Vogel temperature dependence. As PEO side chain content increases, narrowing of the local glassy ß relaxation was observed in the copolymers. The segmental α dynamics were observed to be faster, with an increase in breadth and decrease in strength with increasing PEO side chain content. Owing to the trade-off between T(g) and ε(s), copolymers of intermediate composition result in the highest ionic conductivity when these copolymers are used to plasticize Li single-ion conducting ionomers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA