Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 19(9): e1010932, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37721944

RESUMEN

The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases.


Asunto(s)
Herencia Multifactorial , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Genotipo , Secuencia de Bases , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
2.
bioRxiv ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066341

RESUMEN

Splicing quantitative trait loci (QTLs) have been implicated as a common mechanism underlying complex trait associations. However, utilising splicing QTLs in target discovery and prioritisation has been challenging due to extensive data normalisation which often renders the direction of the genetic effect as well as its magnitude difficult to interpret. This is further complicated by the fact that strong expression QTLs often manifest as weak splicing QTLs and vice versa, making it difficult to uniquely identify the underlying molecular mechanism at each locus. We find that these ambiguities can be mitigated by visualising the association between the genotype and average RNA sequencing read coverage in the region. Here, we generate these QTL coverage plots for 1.7 million molecular QTL associations in the eQTL Catalogue identified with five quantification methods. We illustrate the utility of these QTL coverage plots by performing colocalisation between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. We find that while visually confirmed splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases. All our association summary statistics and QTL coverage plots are freely available at https://www.ebi.ac.uk/eqtl/.

3.
Front Genet ; 12: 649619, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276764

RESUMEN

Long non-coding RNAs are diverse class of non-coding RNA molecules >200 base pairs of length having various functions like gene regulation, dosage compensation, epigenetic regulation. Dysregulation and genomic variations of several lncRNAs have been implicated in several diseases. Their tissue and developmental specific expression are contributing factors for them to be viable indicators of physiological states of the cells. Here we present an comprehensive review the molecular mechanisms and functions, state of the art experimental and computational pipelines and challenges involved in the identification and functional annotation of lncRNAs and their prospects as biomarkers. We also illustrate the application of co-expression networks on the TCGA-LIHC dataset for putative functional predictions of lncRNAs having a therapeutic potential in Hepatocellular carcinoma (HCC).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA