Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338815

RESUMEN

MicroRNAs (miRNA) in extracellular vesicles and particles (EVPs) in maternal circulation during pregnancy and in human milk postpartum are hypothesized to facilitate maternal-offspring communication via epigenetic regulation. However, factors influencing maternal EVP miRNA profiles during these two critical developmental windows remain largely unknown. In a pilot study of 54 mother-child dyads in the New Hampshire Birth Cohort Study, we profiled 798 EVP miRNAs, using the NanoString nCounter platform, in paired maternal second-trimester plasma and mature (6-week) milk samples. In adjusted models, total EVP miRNA counts were lower for plasma samples collected in the afternoon compared with the morning (p = 0.024). Infant age at sample collection was inversely associated with total miRNA counts in human milk EVPs (p = 0.040). Milk EVP miRNA counts were also lower among participants who were multiparous after delivery (p = 0.047), had a pre-pregnancy BMI > 25 kg/m2 (p = 0.037), or delivered their baby via cesarean section (p = 0.021). In post hoc analyses, we also identified 22 specific EVP miRNA that were lower among participants who delivered their baby via cesarean section (Q < 0.05). Target genes of delivery mode-associated miRNAs were over-represented in pathways related to satiety signaling in infants (e.g., CCKR signaling) and mammary gland development and lactation (e.g., FGF signaling, EGF receptor signaling). In conclusion, we identified several key factors that may influence maternal EVP miRNA composition during two critical developmental windows, which should be considered in future studies investigating EVP miRNA roles in maternal and child health.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Lactante , Humanos , Embarazo , Femenino , MicroARNs/metabolismo , Leche Humana/metabolismo , Cesárea , Estudios de Cohortes , Epigénesis Genética , Proyectos Piloto , Periodo Posparto , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
2.
Clin Epigenetics ; 16(1): 5, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38173042

RESUMEN

BACKGROUND: Among men, prostate cancer (PCa) is the second most common cancer and the second leading cause of cancer death. Etiologic factors associated with both prostate carcinogenesis and somatic alterations in tumors are incompletely understood. While genetic variants associated with PCa have been identified, epigenetic alterations in PCa are relatively understudied. To date, DNA methylation (DNAm) and gene expression (GE) in PCa have been investigated; however, these studies did not correct for cell-type proportions of the tumor microenvironment (TME), which could confound results. METHODS: The data (GSE183040) consisted of DNAm and GE data from both tumor and adjacent non-tumor prostate tissue of 56 patients who underwent radical prostatectomies prior to any treatment. This study builds upon previous studies that examined methylation patterns and GE in PCa patients by using a novel tumor deconvolution approach to identify and correct for cell-type proportions of the TME in its epigenome-wide association study (EWAS) and differential expression analysis (DEA). RESULTS: The inclusion of cell-type proportions in EWASs and DEAs reduced the scope of significant alterations associated with PCa. We identified 2,093 significantly differentially methylated CpGs (DMC), and 51 genes associated with PCa, including PCA3, SPINK1, and AMACR. CONCLUSIONS: This work illustrates the importance of correcting for cell types of the TME when performing EWASs and DEAs on PCa samples, and establishes a more confounding-adverse methodology. We identified a more tumor-cell-specific set of altered genes and epigenetic marks that can be further investigated as potential biomarkers of disease or potential therapeutic targets.


Asunto(s)
Metilación de ADN , Neoplasias de la Próstata , Masculino , Humanos , Epigénesis Genética , Microambiente Tumoral/genética , Islas de CpG , Neoplasias de la Próstata/patología , Expresión Génica , Inhibidor de Tripsina Pancreática de Kazal/genética , Inhibidor de Tripsina Pancreática de Kazal/metabolismo
3.
Epigenetics ; 19(1): 2289786, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38090774

RESUMEN

DNA methylation has been extensively utilized to study epigenetic patterns across many diseases as well as to deconvolve blood cell type proportions. This study builds upon previous studies examining methylation patterns in paediatric patients with varying stages of Crohn's disease to extend the immune profiling of these patients using a novel deconvolution approach. Compared with control subjects, we observed significantly decreased levels of CD4 memory and naive, CD8 naive, and natural killer cells and elevated neutrophil levels in Crohn's disease. In addition, Crohn's patients had a significantly elevated neutrophil-to-lymphocyte ratio. Using an epigenome-wide association approach and adjusting for potential confounders, including cell type, we observed 397 differentially methylated CpG (DMC) sites associated with Crohn's disease. The top genetic pathway associated with the DMCs was the regulation of arginine metabolic processes which are involved in the regulation of T cells.


Asunto(s)
Enfermedad de Crohn , Humanos , Niño , Enfermedad de Crohn/genética , Metilación de ADN
4.
Epigenomics ; 16(5): 293-308, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38356412

RESUMEN

Background: Triple-negative breast cancer (TNBC) is an aggressive disease with limited treatment options. Eribulin, a chemotherapeutic drug, induces epigenetic changes in cancer cells, suggesting a unique mechanism of action. Materials & methods: MDA-MB 231 cells were treated with eribulin and paclitaxel, and the samples from 53 patients treated with neoadjuvant eribulin were compared with those from 14 patients who received the standard-of-care treatment using immunohistochemistry. Results: Eribulin treatment caused significant DNA methylation changes in drug-tolerant persister TNBC cells, and it also elicited changes in the expression levels of epigenetic modifiers (DNMT1, TET1, DNMT3A/B) in vitro and in primary TNBC tumors. Conclusion: These findings provide new insights into eribulin's mechanism of action and potential biomarkers for predicting TNBC treatment response.


Asunto(s)
Metilación de ADN , Furanos , Policétidos Poliéteres , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Cetonas/farmacología , Cetonas/uso terapéutico , ADN/metabolismo , Línea Celular Tumoral , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética
5.
Aging Cell ; 23(3): e14071, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38146185

RESUMEN

Aging is a significant risk factor for various human disorders, and DNA methylation clocks have emerged as powerful tools for estimating biological age and predicting health-related outcomes. Methylation data from blood DNA has been a focus of more recently developed DNA methylation clocks. However, the impact of immune cell composition on epigenetic age acceleration (EAA) remains unclear as only some clocks incorporate partial cell type composition information when analyzing EAA. We investigated associations of 12 immune cell types measured by cell-type deconvolution with EAA predicted by six widely-used DNA methylation clocks in data from >10,000 blood samples. We observed significant associations of immune cell composition with EAA for all six clocks tested. Across the clocks, nine or more of the 12 cell types tested exhibited significant associations with EAA. Higher memory lymphocyte subtype proportions were associated with increased EAA, and naïve lymphocyte subtypes were associated with decreased EAA. To demonstrate the potential confounding of EAA by immune cell composition, we applied EAA in rheumatoid arthritis. Our research maps immune cell type contributions to EAA in human blood and offers opportunities to adjust for immune cell composition in EAA studies to a significantly more granular level. Understanding associations of EAA with immune profiles has implications for the interpretation of epigenetic age and its relevance in aging and disease research. Our detailed map of immune cell type contributions serves as a resource for studies utilizing epigenetic clocks across diverse research fields, including aging-related diseases, precision medicine, and therapeutic interventions.


Asunto(s)
Aceleración , Artritis Reumatoide , Humanos , Envejecimiento/genética , Metilación de ADN/genética , Epigénesis Genética
6.
Nat Commun ; 15(1): 3635, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688903

RESUMEN

Although intratumoral heterogeneity has been established in pediatric central nervous system tumors, epigenomic alterations at the cell type level have largely remained unresolved. To identify cell type-specific alterations to cytosine modifications in pediatric central nervous system tumors, we utilize a multi-omic approach that integrated bulk DNA cytosine modification data (methylation and hydroxymethylation) with both bulk and single-cell RNA-sequencing data. We demonstrate a large reduction in the scope of significantly differentially modified cytosines in tumors when accounting for tumor cell type composition. In the progenitor-like cell types of tumors, we identify a preponderance differential Cytosine-phosphate-Guanine site hydroxymethylation rather than methylation. Genes with differential hydroxymethylation, like histone deacetylase 4 and insulin-like growth factor 1 receptor, are associated with cell type-specific changes in gene expression in tumors. Our results highlight the importance of epigenomic alterations in the progenitor-like cell types and its role in cell type-specific transcriptional regulation in pediatric central nervous system tumors.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Metilación de ADN , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Niño , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Epigenómica/métodos , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Análisis de la Célula Individual , Transcripción Genética , Citosina/metabolismo
7.
Nat Commun ; 15(1): 3634, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688897

RESUMEN

Central nervous system (CNS) tumors are the leading cause of pediatric cancer death, and these patients have an increased risk for developing secondary neoplasms. Due to the low prevalence of pediatric CNS tumors, major advances in targeted therapies have been lagging compared to other adult tumors. We collect single nuclei RNA-seq data from 84,700 nuclei of 35 pediatric CNS tumors and three non-tumoral pediatric brain tissues and characterize tumor heterogeneity and transcriptomic alterations. We distinguish cell subpopulations associated with specific tumor types including radial glial cells in ependymomas and oligodendrocyte precursor cells in astrocytomas. In tumors, we observe pathways important in neural stem cell-like populations, a cell type previously associated with therapy resistance. Lastly, we identify transcriptomic alterations among pediatric CNS tumor types compared to non-tumor tissues, while accounting for cell type effects on gene expression. Our results suggest potential tumor type and cell type-specific targets for pediatric CNS tumor treatment. Here we address current gaps in understanding single nuclei gene expression profiles of previously under-investigated tumor types and enhance current knowledge of gene expression profiles of single cells of various pediatric CNS tumors.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Ependimoma , Regulación Neoplásica de la Expresión Génica , Transcriptoma , Humanos , Niño , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/metabolismo , Ependimoma/genética , Ependimoma/patología , Ependimoma/metabolismo , Preescolar , Astrocitoma/genética , Astrocitoma/patología , Astrocitoma/metabolismo , Perfilación de la Expresión Génica/métodos , Femenino , RNA-Seq , Masculino , Adolescente , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Núcleo Celular/metabolismo , Núcleo Celular/genética
8.
Epigenomics ; : 1-9, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38869472

RESUMEN

Aim: This study addresses the challenge of predicting the response of head and neck squamous cell carcinoma (HNSCC) patients to immunotherapy. Methods: Using DNA methylation cytometry, we analyzed the immune profiles of six HNSCC patients who showed a positive response to immunotherapy over a year without disease progression. Results: There was an initial increase in CD8 T memory cells and natural killer cells during the first four cycles of immunotherapy, which then returned to baseline levels after a year. Baseline CD8 T cell levels were lower in HNSCC immunotherapy responders but became similar to those in healthy subjects after immunotherapy. Conclusion: These findings suggest that monitoring fluctuations in immune profiles could potentially identify biomarkers for immunotherapy response in HNSCC patients.


[Box: see text].

9.
Epigenomics ; 16(1): 41-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38221889

RESUMEN

Background: Bladder cancer and therapy responses hinge on immune profiles in the tumor microenvironment (TME) and blood, yet studies linking tumor-infiltrating immune cells to peripheral immune profiles are limited. Methods: DNA methylation cytometry quantified TME and matched peripheral blood immune cell proportions. With tumor immune profile data as the input, subjects were grouped by immune infiltration status and consensus clustering. Results: Immune hot and cold groups had different immune compositions in the TME but not in circulating blood. Two clusters of patients identified with consensus clustering had different immune compositions not only in the TME but also in blood. Conclusion: Detailed immune profiling via methylation cytometry reveals the significance of understanding tumor and systemic immune relationships in cancer patients.


Bladder cancer and treatment outcomes depend on the immune profiles in the tumor and blood. Our study, using DNA methylation cytometry, measured immune cell proportions in both areas. Patients were grouped based on immune status and consensus clustering. Results showed distinct immune compositions in the tumor, but not in blood, for hot and cold groups. Consensus clustering revealed two patient clusters with differing immune compositions in both tumor and blood. This detailed immune profiling highlights the importance of understanding the complex interplay between tumor and systemic immunity in bladder cancer patients.


Asunto(s)
Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Análisis por Conglomerados , Metilación de ADN , Procesamiento Proteico-Postraduccional , Pronóstico
10.
Pac Symp Biocomput ; 29: 464-476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160300

RESUMEN

Graph-based deep learning has shown great promise in cancer histopathology image analysis by contextualizing complex morphology and structure across whole slide images to make high quality downstream outcome predictions (ex: prognostication). These methods rely on informative representations (i.e., embeddings) of image patches comprising larger slides, which are used as node attributes in slide graphs. Spatial omics data, including spatial transcriptomics, is a novel paradigm offering a wealth of detailed information. Pairing this data with corresponding histological imaging localized at 50-micron resolution, may facilitate the development of algorithms which better appreciate the morphological and molecular underpinnings of carcinogenesis. Here, we explore the utility of leveraging spatial transcriptomics data with a contrastive crossmodal pretraining mechanism to generate deep learning models that can extract molecular and histological information for graph-based learning tasks. Performance on cancer staging, lymph node metastasis prediction, survival prediction, and tissue clustering analyses indicate that the proposed methods bring improvement to graph based deep learning models for histopathological slides compared to leveraging histological information from existing schemes, demonstrating the promise of mining spatial omics data to enhance deep learning for pathology workflows.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Biología Computacional , Neoplasias/genética , Algoritmos , Análisis por Conglomerados
11.
NPJ Precis Oncol ; 8(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172524

RESUMEN

Successful treatment of solid cancers relies on complete surgical excision of the tumor either for definitive treatment or before adjuvant therapy. Intraoperative and postoperative radial sectioning, the most common form of margin assessment, can lead to incomplete excision and increase the risk of recurrence and repeat procedures. Mohs Micrographic Surgery is associated with complete removal of basal cell and squamous cell carcinoma through real-time margin assessment of 100% of the peripheral and deep margins. Real-time assessment in many tumor types is constrained by tissue size, complexity, and specimen processing / assessment time during general anesthesia. We developed an artificial intelligence platform to reduce the tissue preprocessing and histological assessment time through automated grossing recommendations, mapping and orientation of tumor to the surgical specimen. Using basal cell carcinoma as a model system, results demonstrate that this approach can address surgical laboratory efficiency bottlenecks for rapid and complete intraoperative margin assessment.

12.
Epigenomics ; : 1-14, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093129

RESUMEN

DNA methylation (DNAm)-based deconvolution estimates contain relative data, forming a composition, that standard methods (testing directly on cell proportions) are ill-suited to handle. In this study we examined the performance of an alternative method, analysis of compositions of microbiomes (ANCOM), for the analysis of DNAm-based deconvolution estimates. We performed two different simulation studies comparing ANCOM to a standard approach (two sample t-test performed directly on cell proportions) and analyzed a real-world data from the Women's Health Initiative to evaluate the applicability of ANCOM to DNAm-based deconvolution estimates. Our findings indicate that ANCOM can effectively account for the compositional nature of DNAm-based deconvolution estimates. ANCOM adequately controls the false discovery rate while maintaining statistical power comparable to that of standard methods.


DNA methylation (DNAm)-based deconvolution provides highly accurate estimates of the proportion of each cell type in a mixed-cell type biological sample (e.g., whole-blood). These estimates can be used for examining the association between cell type proportions and biological or clinical end points; for example, comparing the estimated neutrophil proportion in whole blood between smokers and non-smokers. Cell proportion data has unique features which present challenges for traditional and widely used statistical methods. In response to this issue, our work presents two simulation studies and a real-world analysis that benchmark the performance of current standard statistical methods against an alternative method called analysis composition of microbes (ANCOM), which was originally developed for the analysis of microbiome data. In our real-world analysis we used DNAm data collected from Women's Health Initiative Long Life Study I and compared the results of each method against a gold-standard that is typically not available for these analyses. In each of our simulation studies, ANCOM was able to detect true differences in cell proportions between the groups being compared but had a much lower rate of false discovery compared with the standard statistical methods. Our real-world analysis demonstrated similar findings. Overall, our study highlights the potential of ANCOM as a powerful and robust method for analyzing DNAm-derived deconvolution estimates when the interest is comparisons of cell type proportions and biological or clinical end points. ANCOM's ability to minimize false discovery while maintaining robust statistical power positions it as a valuable addition to the epigenomic analysis toolkit.

13.
Pac Symp Biocomput ; 29: 477-491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160301

RESUMEN

The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways, and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating photoaging and developing new therapeutics. Challenges to current methods include limited focus on dermal elastosis variations and reliance on self-reported measures, which can introduce subjectivity and inconsistency. Spatial transcriptomics offers an opportunity to assess photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies that intervene in photoaging and preventing cancer. Evaluation of distinct histological architectures using highly-multiplexed spatial technologies can identify specific cell lineages that have been understudied due to their location beyond the depth of UV penetration. However, the cost and interpatient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens collected adjacent to surgical resection sites for basal cell and squamous cell keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) information. We developed machine learning models that achieved a macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles across the slides, and accurately captured biological pathways across various tissue architectures.


Asunto(s)
Envejecimiento de la Piel , Humanos , Envejecimiento de la Piel/genética , Reproducibilidad de los Resultados , Biología Computacional , Perfilación de la Expresión Génica , Eosina Amarillenta-(YS) , Transcriptoma
14.
Res Sq ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38234734

RESUMEN

Glioblastomas (GBM) are lethal central nervous system cancers associated with tumor and systemic immunosuppression. Heterogeneous monocyte myeloid-derived suppressor cells (M-MDSC) are implicated in the altered immune response in GBM, but M-MDSC ontogeny and definitive phenotypic markers are unknown. Using single-cell transcriptomics, we revealed heterogeneity in blood M-MDSC from GBM subjects and an enrichment in a transcriptional state reminiscent of neutrophil-like monocytes (NeuMo), a newly described pathway of monopoiesis in mice. Human NeuMo gene expression and Neu-like deconvolution fraction algorithms were created to quantitate the enrichment of this transcriptional state in GBM subjects. NeuMo populations were also observed in M-MDSCs from lung and head and neck cancer subjects. Dexamethasone (DEX) and prednisone exposures increased the usage of Neu-like states, which were inversely associated with tumor purity and survival in isocitrate dehydrogenase wildtype (IDH WT) gliomas. Anti-inflammatory ZC3HA12/Regnase-1 transcripts were highly correlated with NeuMo expression in tumors and in blood M-MDSC from GBM, lung, and head and neck cancer subjects. Additional novel transcripts of immune-modulating proteins were identified. Collectively, these findings provide a framework for understanding the heterogeneity of M-MDSCs in GBM as cells with different clonal histories and may reshape approaches to study and therapeutically target these cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA