Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Phys Chem Chem Phys ; 25(29): 19764-19772, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37448223

RESUMEN

Gas sensors with superior comprehensive performance at room temperature (RT) are always desired. Here, Au, Pt and Pt/Au-decorated graphene-based field effect transistor (FET) sensors for ammonia (denoted as Au/Gr, Pt/Gr and Pt/Au/Gr, respectively) are designed and fabricated. All these devices exhibited far better RT sensing performances for ammonia compared with graphene devices. Applying positive back gate voltages can further enhance their RT performance in which the Pt/Au/Gr devices show superior RT comprehensive performance such as a response of -16.2%, a recovery time of 4.6 min, and especially a much reduced response time of 54 s for 200 ppm NH3 with a detection limit of 103 ppb at a gate voltage of +60 V, and can be potentially tailored for further performance improvement by controlling the ratios of Pt and Au. The dependences of their performance on the gate voltage except for the response time could be reasonably explained by theoretical calculations in terms of the changes of the total density of states near the Fermi level, adsorption energies, transferred charges and adsorption distances. This study provides an effective solution for performance improvement of FET-based sensors via synergistic effects of ultrathin-layer multiple-metallic decoration and gate voltage, which would promote the exploration of novel sensors.

2.
Small ; 18(26): e2202143, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35652499

RESUMEN

Commercialized lithium cobalt oxide (LCO) only shows a relatively low capacity of ≈175 mAh g-1 despite a high theoretical capacity of ≈274 mAh g-1 . As an effective and direct strategy, increasing its charge cutoff voltage can, in principle, escalate the capacity, which is however precluded by the irreversible phase transition, oxygen loss, and severe side reactions with electrolytes normally. Herein, an in situ sulfur-assisted solid-state approach is proposed for one-pot synthesis of long-term highly stable high-voltage LCO with a novel compound structure. The coating of coherent spinel Lix Co2 O4 shells on and the gradient doping of SO4 2- polyanions into LCO are in situ realized simultaneously in terms of gas-solid interface reactions between metal oxides and generated SO2 gas from sulfur during synthesis. At 4.6 V, this LCO shows the discharge capacities of 232.4 mAh g-1 at 0.1 C (1 C = 280 mA g-1 ), 215 mAh g-1 at 1 C and 139 mAh g-1 even at 20 C and the capacity retentions of 97.4% (89.7%) after 100 (300) cycles at 1 C. This approach is facile, low-cost and up-scalable and may provide a route to improve the performance of LCO and other electrode materials greatly.

3.
Opt Express ; 30(24): 43127-43142, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36523018

RESUMEN

Optical superoscillation, a phenomenon that the local optical field can oscillate much faster than that allowed by its highest harmonic, can significantly overcome the Abbe diffraction limit. However, as the spot size is compressed below the superoscillation criteria of 0.38λ/NA, huge sidebands will inevitably appear around the central lobe with intensity hundreds of times higher than that of the central lobe. Here, we propose an approach to realize superoscillation by using destructive interference. The central lobe size can be compressed beyond the superoscillation criteria without formation of strong sidebands by destructive interference between focused fields. Such a super-resolution metalens can find its application in label-free far-field super-resolution microscopy.

4.
Phys Chem Chem Phys ; 22(44): 25769-25779, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33147304

RESUMEN

Effective detection of NO2 and NH3 gases at room temperature (RT) is critical for environmental monitoring and protection. Here, graphene-based gas sensors (Cu/Gr device) of single layer graphene decorated by 6, 8 and 10 nm thick Cu layers with graphene instead of conventional metal as interdigital electrodes are designed and fabricated. The RT performance for both NO2 and NH3 detection can be greatly enhanced by UV light illumination which is closely related to the thickness of Cu layers in which the device with 8 nm thickness (8 nm Cu/Gr device) exhibits the best performances. Analysis of XPS reveals that Cu is partly oxidized to Cu+ and Cu2+ for 6 nm with extra Cuδ+ (1 < δ < 2) for 8 and 10 nm. The contents and distributions of copper oxides and copper in Cu layers influence the catalytic effects and the heterojunction barrier and thus the performances. The RT responses of -30.9% and -8.1% for 5 and 0.3 ppm NO2, and of +29.1% and +5.9% for 105 and 10 ppm NH3 are achieved for the 8 nm Cu/Gr device, respectively. The limits of detection (LODs) for NO2 and NH3 are 12 ppb and 17 ppb, respectively. The sensing mechanisms are discussed in terms of density functional theory (DFT) calculations and energy band diagrams. The study demonstrates an effective solution of improving the device performance by modifying the device configuration and incorporating combined oxides naturally oxidized, which provides the novel design alternatives for high performance sensors.

5.
Phys Chem Chem Phys ; 22(29): 16701-16711, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32658227

RESUMEN

The switch in the sensing mode for better identification of donor/acceptor gases with simultaneous enhancement of the sensing performance at a fixed working temperature particularly room temperature (RT) is quite challenging for gas sensors. Herein, TiO2/graphene hybrid field effect transistor (FET) sensors (TiO2/GFET) with varied hybrid areas are presented. Superior sensing and recovery performances for NH3 are achieved through sensing mode switch via gate biasing. 16.40% response and full recovery for 25 ppm NH3 are achieved for TiO2/GFET sensors with 100% titanium dioxide coverage (D100) at RT (27 °C) with 15-20% humidity upon switching sensing mode from p- to n via gate biasing. Full recovery is attributed to the Coulomb interaction between charged polar donor molecules and positively polarized surface which is enhanced by the switch from p- to n-mode. The humidity can enhance response up to -35.48% for 25 ppm NH3 with full recovery in n-mode for D100. D100 shows superior selectivity towards NH3 against both electron-acceptor NO2 and several other electron-donor analytes. The sensing behaviors for NH3 are well elucidated using energy band diagrams based on the experimental results. This study proposes a novel idea for performance improvement of FET based sensors with p- and n-type hybrid sensing materials through p (n)- to n (p)-mode switch assisted by gate biasing by incorporating suitable electron (hole) rich materials to compensate holes (electrons) in p (n)-type materials for electron donor (acceptor) gas detection.

6.
Small ; 13(40)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28834264

RESUMEN

Suspended single-walled carbon nanotubes (SWNTs) have advantages in mechanical resonators and highly sensitive sensors. Large-scale fabrication of suspended SWNTs array devices and uniformity among SWNTs devices remain a great challenge. This study demonstrates an effective, fast, and wafer-scale technique to fabricate suspended SWNT arrays, which is based on a dynamic motion of silver liquid to suspend and align the SWNTs between the prefabricated palladium electrodes in high temperature annealing treatment. Suspended, strained, and aligned SWNTs are synthesized on a 2 × 2 cm2 substrate with an average density of 10 tubes per micrometer. Under the optimal conditions, almost all SWNTs become suspended. A promising formation model of suspended SWNTs is established. The Kelvin four-terminal resistance measurement shows that these SWNT array devices have extreme low contact resistance. Meanwhile, the suspended SWNT array field effect transistors are fabricated by selective etching of metallic SWNTs using electrical breakdown. This method of large-scale fabrication of suspended architectures pushes the study of nanoscale materials into a new stage related to the electrical physics and industrial applications.

7.
Nano Lett ; 16(8): 5235-40, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27398793

RESUMEN

Dielectric metasurfaces built up with nanostructures of high refractive index represent a powerful platform for highly efficient flat optical devices due to their easy-tuning electromagnetic scattering properties and relatively high transmission efficiencies. Here we show visible-frequency silicon metasurfaces formed by three kinds of nanoblocks multiplexed in a subwavelength unit to constitute a metamolecule, which are capable of wavefront manipulation for red, green, and blue light simultaneously. Full phase control is achieved for each wavelength by independently changing the in-plane orientations of the corresponding nanoblocks to induce the required geometric phases. Achromatic and highly dispersive meta-holograms are fabricated to demonstrate the wavefront manipulation with high resolution. This technique could be viable for various practical holographic applications and flat achromatic devices.

8.
Opt Express ; 24(5): 5300-5310, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29092354

RESUMEN

Recently, accelerating beam is becoming a hotspot in optics research. In this paper, we studied the evolving phases of accelerating generalized polygon beams (AGPBs) and proposed a novel method to generate this beam family. An important discovery has been made about reconstructing AGPBs only by evolving low-frequency phases in high power region, which confirms the dominant role of phase terms in the AGPBs' evolution. We also succeeded controlling the size and quantity of AGPB's intensity peaks in an easy and direct manner by manipulating the evolving phases in low frequency. This result not only explains the self-healing property of AGPBs but also confirms that AGPBs can be a great candidate to function as an optical tweezer to trap and free microparticles and microcreatures for certain purpose.

9.
Opt Express ; 24(15): 16309-19, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27464084

RESUMEN

Dielectric metasurfaces are capable of completely manipulating the phase, amplitude, and polarization of light with high spatial resolutions. The emerging design based on high-index and low-loss dielectrics has led to the realization of novel metasurfaces with high transmissions, but these devices usually operate at the limited bandwidth, and are sensitive to the incident polarization. Here, we report the realization of the polarization-independent and high-efficiency silicon metasurfaces spanning the visible wavelengths about 200 nm. The fabricated computer-generated meta-holograms exhibit a 90% diffraction efficiency, which are verified by gradient metasurfaces with measured efficiencies up to 93% at 670 nm, and exceeding 75% at the wavelengths from 600 to 800 nm for the two orthogonally polarized incidences. These dielectric metasurfaces effectively decouple the phase modulation from the polarization states and frequencies for visible light, which hold great potential for novel flat optical devices operating over a broad spectrum.

10.
Nanotechnology ; 27(36): 365302, 2016 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479528

RESUMEN

Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.

11.
Opt Express ; 23(16): 20521-8, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26367904

RESUMEN

The special spiral phase structure of an optical vortex leads to an intriguing study in modern singular optics. This paper proposes a real-time phase measurement method of vortex beam based on pixelated micropolarizer array (PMA). Four phase-shifting fringe images can be obtained from a single interference image, thus the vortex beam phase can be obtained in real-time. The proposed method can achieve full-field phase measurement of the vortex beam with the advantages of lower computation and vibration resistance. In the experiments, the typical phases of vortex with different topological charges are loaded on a spatial light modulator (SLM) to generate diffraction vortex beam, and the phase distribution of vortex beam is obtained in real-time, which confirm the robustness of this method. This method is of great significance in promoting the study of optical vortices.

12.
Adv Mater ; : e2303001, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031315

RESUMEN

Localized surface plasmon resonance (LSPR) excited by an incident light can normally produce strong surface-enhanced Raman scattering (SERS) at the nanogaps among plasmonic nano-objects (so-called hot spots), which is extensively explored. In contrast, surface plasmon polaritons (SPPs) that can be generated by an incident beam via particular structures with a conservation of wave vectors can excite SERS effects as well. SPPs actually play an indispensable role in high-performance SERS devices but receive much less attention. In this perspective, SPPs and their couplings with LSPR for SERS excitations with differing effectiveness through particular plasmonic/dielectric structures/configurations, along with relevant fabrication approaches, are profoundly reviewed and commented on from a unique perspective from in situ to ex situ excitations of SERS enabled by spatiotemporally separated multiple processes of SPPs. Quantitative design of particular configurations/architectures enabling highly efficient and effective multiple processes of SPPs is particularly emphasized as one giant leap toward ultimate full quantitative design of intrinsically high-performance SERS chips and very critical for their batch manufacturability and applications as well. The viewpoints and prospects about innovative SERS devices based on tailored structure-dominated SPPs effects and their coupling with LSPR are presented and discussed.

13.
Adv Mater ; 35(32): e2301096, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37148533

RESUMEN

Ni-rich layered oxides are the most promising cathodes for Li-ion batteries, but chemo-mechanical failures during cycling and large first-cycle capacity loss hinder their applications in high-energy batteries. Herein, by introducing spinel-like mortise-tenon structures into the layered phase of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811), the adverse volume variations in cathode materials can be significantly suppressed. Meanwhile, these mortise-tenon structures play the role of the expressway for fast lithium-ion transport, which is substantiated by experiments and calculations. Moreover, the particles with mortise-tenon structures usually terminate with the most stable (003) facet. The new cathode exhibits a discharge capacity of 215 mAh g-1 at 0.1 C with an initial Coulombic efficiency of 97.5%, and capacity retention of 82.2% after 1200 cycles at 1 C. This work offers a viable lattice engineering to address the stability and low initial Coulombic efficiency of the Ni-rich layered oxides, and facilitates the implementation of Li-ion batteries with high-energy density and long durability.

14.
ACS Appl Mater Interfaces ; 15(8): 10774-10784, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36799479

RESUMEN

High-Ni Li-rich layered oxides (HNLOs) derived from Li-rich Mn-based layered oxides (LRMLOs) can effectively mitigate the voltage decay of LRMLOs but normally suffered from decreased capacity and cycling stability. Herein, an effective, simple, and up-scalable co-doping strategy of trace Fe and F ions via a facile expanded graphite template-sacrificed approach was proposed for improving the performance of HNLOs. The trace Fe and F co-doping can far more effectively improve both its rate capability and cycling stability in a synergistic manner compared to the introduction of individual Fe cations and F anions. The co-doping of Fe and F increased the Li-O bonds by a magnitude far larger than the summation of the increments by their individual doping, quite favorable for the performance. The trace Fe doping can escalate the capacity and enhance the rate capability significantly by increasing the components of lower valence transition metals to activate their redox reactions more effectively and improving both the electronic and ionic conduction. In contrast, trace F can improve the cycling stability remarkably by lowering the O 2p band top to suppress the lattice oxygen escape effectively which were revealed by density functional theory calculations. The co-doped cathode exhibited excellent cycling stability with a superior capacity retention of 90% after 200 cycles at 1 C, much higher than 64% for the pristine sample. This study offers an idea for synergistically improving the performance of Li-rich layered oxides by co-doping trace Fe cations and F anions simultaneously, which play a complementary role in performance improvement.

15.
Nanoscale Horiz ; 8(9): 1235-1242, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37409404

RESUMEN

An anomalous Hall effect (AHE) is usually presumed to be absent in pristine graphene due to its diamagnetism. In this work, we report that a gate-tunable Hall resistance Rxy can be obtained in edge-bonded monolayer graphene without an external magnetic field. In a perpendicular magnetic field, Rxy consists of a sum of two terms: one from the ordinary Hall effect and the other from the AHE (RAHE). Plateaus of Rxy ∼ 0.94h/3e2 and RAHE ∼ 0.88h/3e2 have been observed while the longitudinal resistance Rxx decreases at a temperature of 2 K, which are indications of the quantum version of the AHE. At a temperature of 300 K, Rxx shows a positive, giant magnetoresistance of ∼177% and RAHE still has a value of ∼400 Ω. These observations indicate the existence of a long-range ferromagnetic order in pristine graphene, which may lead to new applications in pure carbon-based spintronics.

16.
Adv Mater ; 35(12): e2204286, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36111553

RESUMEN

Metasurface polarization optics that consist of 2D array of birefringent nano-antennas have proven remarkable capabilities to generate and manipulate vectorial fields with subwavelength resolution and high efficiency. Integrating this new type of metasurface with the standard vertical cavity surface-emitting laser (VCSEL) platform enables an ultracompact and powerful solution to control both phase and polarization properties of the laser on a chip, which allows to structure a VCSEL into vector beams with on-demand wavefronts. Here, this concept is demonstrated by directly generating versatile vector beams from commercially available VCSELs through on-chip integration of high-index dielectric metasurfaces. Experimentally, the versatility of the approach for the development of vectorial VCSELs are validated by implementing a variety of functionalities, including directional emission of multibeam with specified polarizations, vectorial holographic display, and vector vortex beams generations. Notably, the proposed vectorial VCSELs integrated with a single layer of beam shaping metasurface bypass the requirements of multiple cascaded optical components, and thus have the potential to promote the advancements of ultracompact, lightweight, and scalable vector beams sources, enriching and expanding the applications of VCSELs in optical communications, laser manipulation and processing, information encryption, and quantum optics.

17.
ACS Appl Mater Interfaces ; 14(17): 19594-19603, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35466667

RESUMEN

Low-cost Mn- and Li-rich layered oxides suffer from rapid voltage decay, which can be improved by increasing the nickel content to derive high nickel Li-rich layered oxides (HNLO) but is normally accompanied by reduced capacity and inferior cycling stability. Herein, Na or K ions are successfully doped into the lattice of high nickel Li-rich Li1.2-xMxNi0.32Mn0.48O2 (M = Na, K) layered oxides via a facile expanded graphite template-sacrificed approach. Both Na- and K-doped samples exhibit excellent rate capability and cycling stability compared with the un-doped one. The Na-doped sample shows a capacity retention of 93% after 200 cycles at 1C, which is quite outstanding for HNLO. The greatly improved electrochemical performances are attributed to the increased effective Li content in the lattice via Li antievaporation-loss engineering, the expanded Li slab, the pillaring effect, the increased C2/m component, and the improved electronic conductivity. Different performances by the introduction of sodium and potassium ions may be ascribed to their different ionic radii, which give rise to their different doping behaviors and threshold doping amounts. This work provides a new idea of enhancing electrochemical performance of HNLO by doping proper alien elements to increase the lattice lithium content effectively.

18.
Adv Sci (Weinh) ; 9(15): e2200647, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35322577

RESUMEN

As an indispensable constituent of plasmonic materials/dielectrics for surface enhanced Raman scattering (SERS) effects, dielectrics play a key role in excitation and transmission of surface plasmons which however remain more elusive relative to plasmonic materials. Herein, different roles of vertical dielectric walls, and horizontal and vertical dielectric layers in SERS via 3D periodic plasmonic materials/dielectrics structures are studied. Surface plasmon polariton (SPP) interferences can be maximized within dielectric walls besieged by plasmonic layers at the wall thicknesses of integral multiple half-SPPplasmonic material-dielectric -wavelength which effectively excites localized surface plasmon resonance to improve SERS effects by one order of magnitude compared to roughness and/or nanogaps only. The introduction of extra Au nanoparticles on thin dielectric layers can further enhance SERS effects only slightly. Thus, the designed Au/SiO2 based SERS chips show an enhancement factor of 8.9 × 1010 , 265 times higher relative to the chips with far thinner SiO2 walls. As many as 1200 chips are batch fabricated for a 4 in wafer using cost-effective nanoimprint lithography which can detect trace Hg ions as low as 1 ppt. This study demonstrates a complete generalized platform from design to low-cost batch-fabrication to applications for novel high performance SERS chips of any plasmonic materials/dielectrics.

19.
Light Sci Appl ; 10(1): 10, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414367

RESUMEN

Light travels in a zero-index medium without accumulating a spatial phase, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended superradiance. A promising platform to achieve these applications is an integrated Dirac-cone material that features an impedance-matched zero index. Although an integrated Dirac-cone material eliminates ohmic losses via its purely dielectric structure, it still entails out-of-plane radiation loss, limiting its applications to a small scale. We design an ultra-low-loss integrated Dirac cone material by achieving destructive interference above and below the material. The material consists of a square array of low-aspect-ratio silicon pillars embedded in silicon dioxide, featuring easy fabrication using a standard planar process. This design paves the way for leveraging the perfect spatial coherence of large-area zero-index materials in linear, nonlinear, and quantum optics.

20.
Langmuir ; 26(6): 4443-8, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-19950893

RESUMEN

An effective way is developed to fabricate AgPt alloy nanoislands on gold nanorods based on the galvanic replacement between Ag and PtCl(4)(2-) in the presence of cetyltrimethylammonium bromide (CTAB). The optical and catalytic properties benefit from the porous structure composed of AgPt nanoislands. A large red shift (265 nm) after etching is observed for longitudinal surface plasmon resonance (SPR) in comparison with Au@Pt0.1@Ag. Alloy compositions in bulk miscibility gap can be obtained and finely tuned from Ag(0.56)Pt(0.44) to Ag(0.38)Pt(0.62). A unique composition dependence is found for both electrocatalytic oxidation of methanol and catalytic oxidation of o-phenylenediamine (OPD) by hydrogen peroxide. In both systems, the highest catalytic activity is achieved at the alloy composition of Pt(0.62)Ag(0.38). Proper alloying with Ag not only improves the CO poisoning of Pt catalyst but also enhances the catalytic activity greatly.


Asunto(s)
Aleaciones , Nanoestructuras , Platino (Metal) , Plata , Catálisis , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja Corta , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA