Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anim Biosci ; 34(6): 1061-1069, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33561327

RESUMEN

OBJECTIVE: This study was conducted to evaluate the effects of feed processing and particle size on growth performance, nutrient digestibility, carcass characteristics, and gastric health in growing-finishing pigs. METHODS: A total of 360 growing pigs (22.64±0.014 kg initial body weight [BW]) were allocated to 1 of 6 treatments with 6 replicates by BW and sex, and 10 pigs were housed in one pen in a randomized complete block design. The BW and feed intake were recorded to calculate growth performance. For the digestibility trial, a total of 24 barrows with an initial BW of 33.65±0.372 kg were split into 6 treatments with a completely randomized design. Dietary treatments were designed by a 2×3 factorial arrangement of treatments based on two main factors, particle size (600, 750, 900 µm) and feed form (mash and pellet) of diet. Experimental diets were formulated to contain the requirements of the NRC (2012). RESULTS: The BW and average daily gain were not changed by dietary treatments, and the feed intake of finishing pigs (wks 6 to 12) was increased when the pigs were fed a mash diet (p<0.05). For the overall period, the feed efficiency of pigs was improved with the pellet diet (p<0.01) and reduced particle size (p<0.05). The pellet diet had effects on increasing crude fat digestibility (p<0.01) relative to a mash diet, but there was no considerable change in dry matter and crude protein digestibilities by dietary treatments. In the evaluation of gastric health, a trend for an increased incidence of keratinization in the esophageal region was observed as particle size decreased (p = 0.07). CONCLUSION: Feed efficiency could be improved by pellet diet and reduced particle size. Nutrient digestibility, carcass characteristics, and gastric health were not affected by feed form, and particle size ranged from 600 to 900 µm.

2.
J Anim Sci Technol ; 61(5): 294-303, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31602308

RESUMEN

This study was performed to evaluate the effects of dietary vitamin levels on physiological responses, blood profiles, and reproductive performance in gestating sows. A total of 52 F1 multiparous sows (Yorkshire × Landrace) with an average body weight of 223.5 ± 31.7 kg, an average parity of 6.4 ± 2.7, and an average backfat thickness of 18.5 ± 4.9 mm were divided into four treatment groups considering body weight, backfat thickness, and parity in a completely randomized design with 13 replicates. The treatments were 100% (V1), 300% (V3), 600% (V6) and 900% (V9) of the National Research Council (NRC) Nutrient Requirements of Swine. The gestation diet was formulated based on corn-soybean meal (SBM) and contained 3,265 kcal of metabolizable energy (ME)/kg and 12.00% crude protein. During the lactation period, all sows were fed the same commercial lactation diet. There was no significant difference in body weight of gestating sows. However backfat thickness tended to increase when higher levels of vitamins were provided to gestating sows (p < 0.10). When high levels of dietary vitamins were provided, the body weight change of lactating sows increased (p < 0.01). When sows were fed higher levels of vitamins, the feed intake of lactating sows tended to decrease (p = 0.06). There were no treatment differences in the number of total born, born alive, stillbirth piglets, or the body weight of piglets according to different dietary vitamin level. As dietary vitamin level increased, the serum concentration of 25(OH)D3 in sows at 90 days of gestation linearly increased (p < 0.01). Furthermore, the serum vitamin E level of gestating sows was linearly increased with increasing dietary vitamin level (p < 0.05). The current NRC vitamin requirements are sufficient for gestating sows and higher levels of vitamins in the gestation diet did not show any beneficial effects for gestating and lactating sows.

3.
J Anim Sci Technol ; 61(3): 154-162, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31333872

RESUMEN

This experiment was conducted to evaluate the effect of dietary energy and crude protein (CP) levels on reproductive performance, litter performance, milk quality, and blood profiles in gestating sows. A total of 59 multiparous sows (Yorkshire × Landrace) with similar body weights (BW), backfat thickness (BF), and parity were assigned to one of six treatments with 9 or 10 sows per treatment using a 2 × 3 factorial arrangement and completely randomized design. The first factor was two levels of dietary metabolizable energy (ME) density (13.40 or 13.82 MJ/kg) and the second factor was three dietary protein levels based from 35 day in gestating phases (10.5%, 12%, and 13.5%). Backfat thickness change in lactating sows decreased linearly as CP level increased (p = 0.03). Increased energy level in the gestating sow diet tended to increase the total number of piglets born (p = 0.07), but piglet weight decreased (p = 0.02). Dietary CP level had a negative effect on colostrum quality. Casein, protein, total solid, and solids-not-fat concentrations decreased linearly and lactose level increased linearly as CP level in the gestating sow diet increased (casein%: p = 0.03; protein%: p = 0.04; lactose%: p = 0.06; total solids: p = 0.03; solid-not-fat: p = 0.03, respectively). However, improving ME by 0.42 MJ/kg had no significant effect on the chemical composition of sow colostrum. There were no significant differences in blood glucose concentration in gestating sows when sows were fed different levels of energy during gestation, but blood glucose increased at 21 day of lactation when energy increased by 0.42 MJ/kg (p = 0.04). Blood urea nitrogen concentration increased linearly when dietary CP levels increased at 110 day in gestation, 24-hours postpartum, and 21 days of lactation (linear, p < 0.05, p < 0.05, and p < 0.05, respectively), and it also increased when dietary energy increased at 110 days of gestation and 24-hours postpartum (p < 0.01, and p < 0.01, respectively). A gestating sow diet containing 13.82 MJ/kg ME and 10.5% CP can improve reproductive performance, litter performance, and colostrum quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA