Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(3): 596-608.e17, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194966

RESUMEN

BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Caspasas/metabolismo , COVID-19/inmunología , COVID-19/virología , Pulmón/virología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Internalización del Virus , Glicoproteína de la Espiga del Coronavirus/genética
2.
Cell ; 184(14): 3774-3793.e25, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34115982

RESUMEN

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.


Asunto(s)
Citomegalovirus/fisiología , Macrófagos Alveolares/virología , Animales , Presentación de Antígeno , Efecto Espectador , Ciclo Celular , Línea Celular Transformada , Reprogramación Celular , Citomegalovirus/patogenicidad , Citomegalovirus/ultraestructura , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Proteínas Fluorescentes Verdes/metabolismo , Pulmón/patología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/ultraestructura , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo , Células Madre/patología , Replicación Viral/fisiología , Vía de Señalización Wnt
3.
Nat Immunol ; 21(12): 1563-1573, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33106669

RESUMEN

Chronic cytomegalovirus (CMV) infection leads to long-term maintenance of extraordinarily large CMV-specific T cell populations. The magnitude of this so-called 'memory inflation' is thought to mainly depend on antigenic stimulation during the chronic phase of infection. However, by mapping the long-term development of CD8+ T cell families derived from single naive precursors, we find that fate decisions made during the acute phase of murine CMV infection can alter the level of memory inflation by more than 1,000-fold. Counterintuitively, a T cell family's capacity for memory inflation is not determined by its initial expansion. Instead, those rare T cell families that dominate the chronic phase of infection show an early transcriptomic signature akin to that of established T central memory cells. Accordingly, a T cell family's long-term dominance is best predicted by its early content of T central memory precursors, which later serve as a stem-cell-like source for memory inflation.


Asunto(s)
Evolución Clonal/inmunología , Interacciones Huésped-Patógeno/inmunología , Memoria Inmunológica , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Virosis/etiología , Virosis/metabolismo , Enfermedad Aguda , Animales , Biomarcadores , Enfermedad Crónica , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Ratones , Muromegalovirus/inmunología
4.
Nat Immunol ; 21(4): 434-441, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32205883

RESUMEN

Adaptive evolution is a key feature of T cell immunity. During acute immune responses, T cells harboring high-affinity T cell antigen receptors (TCRs) are preferentially expanded, but whether affinity maturation by clonal selection continues through the course of chronic infections remains unresolved. Here we investigated the evolution of the TCR repertoire and its affinity during the course of infection with cytomegalovirus, which elicits large T cell populations in humans and mice. Using single-cell and bulk TCR sequencing and structural affinity analyses of cytomegalovirus-specific T cells, and through the generation and in vivo monitoring of defined TCR repertoires, we found that the immunodominance of high-affinity T cell clones declined during the chronic infection phase, likely due to cellular senescence. These data showed that under conditions of chronic antigen exposure, low-affinity TCRs preferentially expanded within the TCR repertoire, with implications for immunotherapeutic strategies.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Senescencia Celular/inmunología , Citomegalovirus/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL
5.
Immunity ; 54(10): 2288-2304.e7, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34437840

RESUMEN

Upon viral infection, natural killer (NK) cells expressing certain germline-encoded receptors are selected, expanded, and maintained in an adaptive-like manner. Currently, these are thought to differentiate along a common pathway. However, by fate mapping of single NK cells upon murine cytomegalovirus (MCMV) infection, we identified two distinct NK cell lineages that contributed to adaptive-like responses. One was equivalent to conventional NK (cNK) cells while the other was transcriptionally similar to type 1 innate lymphoid cells (ILC1s). ILC1-like NK cells showed splenic residency and strong cytokine production but also recognized and killed MCMV-infected cells, guided by activating receptor Ly49H. Moreover, they induced clustering of conventional type 1 dendritic cells and facilitated antigen-specific T cell priming early during MCMV infection, which depended on Ly49H and the NK cell-intrinsic expression of transcription factor Batf3. Thereby, ILC1-like NK cells bridge innate and adaptive viral recognition and unite critical features of cNK cells and ILC1s.


Asunto(s)
Inmunidad Adaptativa/inmunología , Linaje de la Célula/inmunología , Infecciones por Herpesviridae/inmunología , Inmunidad Innata/inmunología , Células Asesinas Naturales/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus
6.
Immunity ; 50(6): 1391-1400.e4, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31103380

RESUMEN

Natural killer (NK) cells show some features of adaptive immunity but have not been studied at the clonal level. Here, we used retrogenic color-barcoding and single-cell adoptive transfers to track clonal immune responses to murine cytomegalovirus (MCMV) infection, derived from individual NK cells expressing activating receptor Ly49H. Clonal expansion of single NK cells varied substantially, and this variation could not be attributed to the additional presence or absence of inhibitory Ly49 receptors. Instead, single-cell-derived variability correlated with distinct surface expression levels of Ly49H itself. Ly49Hhi NK cell clones maintained higher Ly49H expression and expanded more than their Ly49Hlo counterparts in response to MCMV. Thus, akin to adaptive processes shaping an antigen-specific T cell receptor (TCR) repertoire, the Ly49H+ NK cell population adapts to MCMV infection. This process relies on the clonal maintenance of distinct Ly49H expression levels, generating a repertoire of individual NK cells outfitted with distinct reactivity to MCMV.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Animales , Células Asesinas Naturales , Ratones , Ratones Endogámicos C57BL , Subfamilia A de Receptores Similares a Lectina de Células NK
7.
PLoS Pathog ; 20(2): e1012025, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38346075

RESUMEN

Cytomegalovirus (CMV) induces a unique T cell response, where antigen-specific populations do not contract, but rather inflate during viral latency. It has been proposed that subclinical episodes of virus reactivation feed the inflation of CMV-specific memory cells by intermittently engaging T cell receptors (TCRs), but evidence of TCR engagement has remained lacking. Nuclear factor of activated T cells (NFAT) is a family of transcription factors, where NFATc1 and NFATc2 signal downstream of TCR in mature T lymphocytes. We show selective impacts of NFATc1 and/or NFATc2 genetic ablations on the long-term inflation of MCMV-specific CD8+ T cell responses despite largely maintained responses to acute infection. NFATc1 ablation elicited robust phenotypes in isolation, but the strongest effects were observed when both NFAT genes were missing. CMV control was impaired only when both NFATs were deleted in CD8+ T cells used in adoptive immunotherapy of immunodeficient mice. Transcriptome analyses revealed that T cell intrinsic NFAT is not necessary for CD8+ T cell priming, but rather for their maturation towards effector-memory and in particular the effector cells, which dominate the pool of inflationary cells.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Animales , Ratones , Muromegalovirus/fisiología , Linfocitos T CD8-positivos , Citomegalovirus , Receptores de Antígenos de Linfocitos T , Memoria Inmunológica
8.
Proc Natl Acad Sci U S A ; 120(10): e2200626120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36853939

RESUMEN

Engagement of the inhibitory T cell receptor programmed cell death protein 1 (PD-1) associates with dysfunctional states of pathogen- or tumor-specific T cells. Accordingly, systemic antibody-mediated blockade of PD-1 has become a central target for immunotherapies but is also associated with severe toxicities due to loss of peripheral tolerance. Therefore, selective ablation of PD-1 expression on adoptively transferred T cells through direct genetic knockout (KO) is currently being explored as an alternative therapeutic approach. However, since PD-1 might also be required for the regulation of physiological T cell function and differentiation, the suitability of PD-1 as an engineering target is controversial. In this study, we systematically investigated the maintenance of T cell functionality after CRISPR/Cas9-mediated PD-1 KO in vivo during and after acute and chronic antigen encounter. Under all tested conditions, PD-1 ablation preserved the persistence, differentiation, and memory formation of adoptively transferred receptor transgenic T cells. Functional PD-1 KO T cells expressing chimeric antigen receptors (CARs) targeting CD19 could be robustly detected for over 390 d in a syngeneic immunocompetent mouse model, in which constant antigen exposure was provided by continuous B cell renewal, representing the longest in vivo follow-up of CAR-T cells described to date. PD-1 KO CAR-T cells showed no evidence for malignant transformation during the entire observation period. Our data demonstrate that genetic ablation of PD-1 does not impair functionality and longevity of adoptively transferred T cells per se and therefore may be pursued more generally in engineered T cell-based immunotherapy to overcome a central immunosuppressive axis.


Asunto(s)
Receptor de Muerte Celular Programada 1 , Linfocitos T , Animales , Ratones , Receptor de Muerte Celular Programada 1/genética , Proteínas Adaptadoras Transductoras de Señales , Animales Modificados Genéticamente , Anticuerpos Bloqueadores
9.
J Immunol ; 208(4): 799-806, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35091435

RESUMEN

The potential of memory T cells to provide protection against reinfection is beyond question. Yet, it remains debated whether long-term T cell memory is due to long-lived memory cells. There is ample evidence that blood-derived memory phenotype CD8+ T cells maintain themselves through cell division, rather than through longevity of individual cells. It has recently been proposed, however, that there may be heterogeneity in the lifespans of memory T cells, depending on factors such as exposure to cognate Ag. CMV infection induces not only conventional, contracting T cell responses, but also inflationary CD8+ T cell responses, which are maintained at unusually high numbers, and are even thought to continue to expand over time. It has been proposed that such inflating T cell responses result from the accumulation of relatively long-lived CMV-specific memory CD8+ T cells. Using in vivo deuterium labeling and mathematical modeling, we found that the average production rates and expected lifespans of mouse CMV-specific CD8+ T cells are very similar to those of bulk memory-phenotype CD8+ T cells. Even CMV-specific inflationary CD8+ T cell responses that differ 3-fold in size were found to turn over at similar rates.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Interacciones Huésped-Patógeno/inmunología , Memoria Inmunológica , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Muromegalovirus/inmunología , Algoritmos , Animales , Biomarcadores , Linfocitos T CD8-positivos/metabolismo , Infecciones por Citomegalovirus/virología , Epítopos de Linfocito T/inmunología , Femenino , Inmunofenotipificación , Ratones , Modelos Teóricos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
10.
Eur J Immunol ; 52(6): 936-945, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304741

RESUMEN

COVID-19 vaccines prevent severe forms of the disease, but do not warrant complete protection against breakthrough infections. This could be due to suboptimal mucosal immunity at the site of virus entry, given that all currently approved vaccines are administered via the intramuscular route. In this study, we assessed humoral and cellular immune responses in BALB/c mice after intranasal and intramuscular immunization with adenoviral vector ChAdOx1-S expressing full-length Spike protein of SARS-CoV-2. We showed that both routes of vaccination induced a potent IgG antibody response, as well as robust neutralizing capacity, but intranasal vaccination elicited a superior IgA antibody titer in the sera and in the respiratory mucosa. Bronchoalveolar lavage from intranasally immunized mice efficiently neutralized SARS-CoV-2, which has not been the case in intramuscularly immunized group. Moreover, substantially higher percentages of epitope-specific CD8 T cells exhibiting a tissue resident phenotype were found in the lungs of intranasally immunized animals. Finally, both intranasal and intramuscular vaccination with ChAdOx1-S efficiently protected the mice after the challenge with recombinant herpesvirus expressing the Spike protein. Our results demonstrate that intranasal application of adenoviral vector ChAdOx1-S induces superior mucosal immunity and therefore could be a promising strategy for putting the COVID-19 pandemic under control.


Asunto(s)
COVID-19 , Vacunas Virales , Adenoviridae/genética , Administración Intranasal , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Celular , Inmunidad Mucosa , Ratones , Ratones Endogámicos BALB C , Pandemias/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación/métodos
11.
J Virol ; 96(5): e0218621, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35019723

RESUMEN

Recent emergence of SARS-CoV-1 variants demonstrates the potential of this virus for targeted evolution, despite its overall genomic stability. Here we show the dynamics and the mechanisms behind the rapid adaptation of SARS-CoV-2 to growth in Vero E6 cells. The selective advantage for growth in Vero E6 cells is due to increased cleavage efficiency by cathepsins at the mutated S1/S2 site. S1/S2 site also constitutes a heparan sulfate (HS) binding motif that influenced virus growth in Vero E6 cells, but HS antagonist did not inhibit virus adaptation in these cells. The entry of Vero E6-adapted virus into human cells is defective because the mutated spike variants are poorly processed by furin or TMPRSS2. Minor subpopulation that lack the furin cleavage motif in the spike protein rapidly become dominant upon passaging through Vero E6 cells, but wild type sequences are maintained at low percentage in the virus swarm and mediate a rapid reverse adaptation if the virus is passaged again on TMPRSS2+ human cells. Our data show that the spike protein of SARS-CoV-2 can rapidly adapt itself to available proteases and argue for deep sequence surveillance to identify the emergence of novel variants. IMPORTANCE Recently emerging SARS-CoV-2 variants B.1.1.7 (alpha variant), B.1.617.2 (delta variant), and B.1.1.529 (omicron variant) harbor spike mutations and have been linked to increased virus pathogenesis. The emergence of these novel variants highlights coronavirus adaptation and evolution potential, despite the stable consensus genotype of clinical isolates. We show that subdominant variants maintained in the virus population enable the virus to rapidly adapt to selection pressure. Although these adaptations lead to genotype change, the change is not absolute and genomes with original genotype are maintained in the virus swarm. Thus, our results imply that the relative stability of SARS-CoV-2 in numerous independent clinical isolates belies its potential for rapid adaptation to new conditions.


Asunto(s)
COVID-19/metabolismo , Furina/metabolismo , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Adaptación Fisiológica , Animales , COVID-19/genética , COVID-19/virología , Chlorocebus aethiops , Efecto Citopatogénico Viral , Furina/genética , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , SARS-CoV-2/genética , Serina Endopeptidasas/genética , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Replicación Viral
12.
PLoS Pathog ; 17(12): e1010061, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34882748

RESUMEN

Over 1 million children develop tuberculosis (TB) each year, with a quarter dying. Multiple factors impact the risk of a child being exposed to Mycobacterium tuberculosis (Mtb), the risk of progressing to TB disease, and the risk of dying. However, an emerging body of evidence suggests that coinfection with cytomegalovirus (CMV), a ubiquitous herpes virus, impacts the host response to Mtb, potentially influencing the probability of disease progression, type of TB disease, performance of TB diagnostics, and disease outcome. It is also likely that infection with Mtb impacts CMV pathogenesis. Our current understanding of the burden of these 2 diseases in children, their immunological interactions, and the clinical consequence of coinfection is incomplete. It is also unclear how potential interventions might affect disease progression and outcome for TB or CMV. This article reviews the epidemiological, clinical, and immunological literature on CMV and TB in children and explores how the 2 pathogens interact, while also considering the impact of HIV on this relationship. It outlines areas of research uncertainty and makes practical suggestions as to potential studies that might address these gaps. Current research is hampered by inconsistent definitions, study designs, and laboratory practices, and more consistency and collaboration between researchers would lead to greater clarity. The ambitious targets outlined in the World Health Organization End TB Strategy will only be met through a better understanding of all aspects of child TB, including the substantial impact of coinfections.


Asunto(s)
Coinfección , Infecciones por Citomegalovirus/complicaciones , Tuberculosis/complicaciones , Adolescente , Niño , Preescolar , Coinfección/inmunología , Infecciones por Citomegalovirus/inmunología , Femenino , Humanos , Masculino , Tuberculosis/inmunología
13.
Proc Natl Acad Sci U S A ; 117(23): 12961-12968, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32444487

RESUMEN

Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling. We demonstrate the key role of vICA from either virus, in deflecting antigen-specific CD8 T cell-killing of infected cells. vICA-deficient mutants, lacking either UL36 or M36, exhibit greater susceptibility to CD8 T cell control than mutants lacking the set of immunoevasins known to disrupt antigen presentation via MHC class I. This difference is evident during infection in the natural mouse host infected with MCMV, in settings where virus-specific CD8 T cells are adoptively transferred. Finally, we identify the molecular mechanism through which vICA acts, demonstrating the central contribution of caspase-8 signaling at a point of convergence of death receptor-induced apoptosis and perforin/granzyme-dependent cytotoxicity.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Interacciones Microbiota-Huesped/inmunología , Evasión Inmune , Linfocitos T Citotóxicos/inmunología , Animales , Apoptosis/inmunología , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular , Técnicas de Cocultivo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/virología , Modelos Animales de Enfermedad , Fibroblastos , Granzimas/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Ratones , Ratones Noqueados , Muromegalovirus/genética , Muromegalovirus/inmunología , Muromegalovirus/metabolismo , Mutagénesis , Perforina/genética , Perforina/metabolismo , Receptores de Muerte Celular/metabolismo , Transducción de Señal/inmunología , Linfocitos T Citotóxicos/metabolismo , Imagen de Lapso de Tiempo , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
14.
Angew Chem Int Ed Engl ; 62(6): e202214595, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36422061

RESUMEN

A new family of highly unusual sesquarterpenoids (persicamidines A-E) exhibiting significant antiviral activity was isolated from a newly discovered actinobacterial strain, Kibdelosporangium persicum sp. nov., collected from a hot desert in Iran. Extensive NMR analysis unraveled a hexacyclic terpenoid molecule with a modified sugar moiety on one side and a highly unusual isourea moiety fused to the terpenoid structure. The structures of the five analogues differed only in the aminoalkyl side chain attached to the isourea moiety. Persicamidines A-E showed potent activity against hCoV-229E and SARS-CoV-2 viruses in the nanomolar range together with very good selectivity indices, making persicamidines promising as starting points for drug development.


Asunto(s)
COVID-19 , Coronavirus Humano 229E , Humanos , Antivirales/química , SARS-CoV-2 , Extractos Vegetales
15.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34910301

RESUMEN

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Citometría de Flujo , Infecciones/inmunología , Neoplasias/inmunología , Animales , Enfermedad Crónica , Humanos , Ratones , Guías de Práctica Clínica como Asunto
16.
BMC Med ; 20(1): 102, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236358

RESUMEN

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Asunto(s)
COVID-19 , Vacuna BNT162 , COVID-19/prevención & control , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
17.
Nucleic Acids Res ; 48(20): 11799-11811, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33137201

RESUMEN

Mammalian first line of defense against viruses is accomplished by the interferon (IFN) system. Viruses have evolved numerous mechanisms to reduce the IFN action allowing them to invade the host and/or to establish latency. We generated an IFN responsive intracellular hub by integrating the synthetic transactivator tTA into the chromosomal Mx2 locus for IFN-based activation of tTA dependent expression modules. The additional implementation of a synthetic amplifier module with positive feedback even allowed for monitoring and reacting to infections of viruses that can antagonize the IFN system. Low and transient IFN amounts are sufficient to trigger these amplifier cells. This gives rise to higher and sustained-but optionally de-activatable-expression even when the initial stimulus has faded out. Amplification of the IFN response induced by IFN suppressing viruses is sufficient to protect cells from infection. Together, this interfaced sensor/actuator system provides a toolbox for robust sensing and counteracting viral infections.


Asunto(s)
Interferón Tipo I/metabolismo , Fenómenos Fisiológicos de los Virus , Animales , Células Cultivadas , Retroalimentación Fisiológica , Luciferasas/análisis , Ratones , Virus de la Enfermedad de Newcastle/fisiología
18.
PLoS Pathog ; 15(6): e1007890, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31220189

RESUMEN

Cytomegalovirus (CMV) is a ubiquitous herpesvirus infecting most of the world's population. CMV has been rigorously investigated for its impact on lifelong immunity and potential complications arising from lifelong infection. A rigorous adaptive immune response mounts during progression of CMV infection from acute to latent states. CD8 T cells, in large part, drive this response and have very clearly been demonstrated to take up residence in the salivary gland and lungs of infected mice during latency. However, the role of tissue resident CD8 T cells as an ongoing defense mechanism against CMV has not been studied in other anatomical locations. Therefore, we sought to identify additional locations of anti-CMV T cell residency and the physiological consequences of such a response. Through RT-qPCR we found that mouse CMV (mCMV) infected the visceral adipose tissue and that this resulted in an expansion of leukocytes in situ. We further found, through flow cytometry, that adipose tissue became enriched in cytotoxic CD8 T cells that are specific for mCMV antigens from day 7 post infection through the lifespan of an infected animal (> 450 days post infection) and that carry markers of tissue residence. Furthermore, we found that inflammatory cytokines are elevated alongside the expansion of CD8 T cells. Finally, we show a correlation between the inflammatory state of adipose tissue in response to mCMV infection and the development of hyperglycemia in mice. Overall, this study identifies adipose tissue as a location of viral infection leading to a sustained and lifelong adaptive immune response mediated by CD8 T cells that correlates with hyperglycemia. These data potentially provide a mechanistic link between metabolic syndrome and chronic infection.


Asunto(s)
Tejido Adiposo , Linfocitos T CD8-positivos , Infecciones por Herpesviridae , Hiperglucemia , Muromegalovirus/inmunología , Paniculitis , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Tejido Adiposo/virología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Hiperglucemia/genética , Hiperglucemia/inmunología , Hiperglucemia/patología , Hiperglucemia/virología , Memoria Inmunológica , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Inflamación/virología , Ratones , Ratones Noqueados , Paniculitis/genética , Paniculitis/inmunología , Paniculitis/patología , Paniculitis/virología
19.
PLoS Pathog ; 15(9): e1008036, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525249

RESUMEN

Cytomegalovirus (CMV) is a ubiquitous ß-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Mucosa , Vacunas contra la Influenza/inmunología , Muromegalovirus/inmunología , Administración Intranasal , Secuencia de Aminoácidos , Animales , Línea Celular , Quimiocinas/biosíntesis , Epítopos de Linfocito T/administración & dosificación , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Productos del Gen env/administración & dosificación , Productos del Gen env/genética , Productos del Gen env/inmunología , Vectores Genéticos , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Gripe Humana/inmunología , Gripe Humana/prevención & control , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Muromegalovirus/genética , Células 3T3 NIH , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
20.
PLoS Pathog ; 15(5): e1007785, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31083700

RESUMEN

Memory T cell inflation is a process in which a subset of cytomegalovirus (CMV) specific CD8 T cells continuously expands mainly during latent infection and establishes a large and stable population of effector memory cells in peripheral tissues. Here we set out to identify in vivo parameters that promote and limit CD8 T cell inflation in the context of MCMV infection. We found that the inflationary T cell pool comprised mainly high avidity CD8 T cells, outcompeting lower avidity CD8 T cells. Furthermore, the size of the inflationary T cell pool was not restricted by the availability of specific tissue niches, but it was directly related to the number of virus-specific CD8 T cells that were activated during priming. In particular, the amount of early-primed KLRG1- cells and the number of inflationary cells with a central memory phenotype were a critical determinant for the overall magnitude of the inflationary T cell pool. Inflationary memory CD8 T cells provided protection from a Vaccinia virus challenge and this protection directly correlated with the size of the inflationary memory T cell pool in peripheral tissues. These results highlight the remarkable protective potential of inflationary CD8 T cells that can be harnessed for CMV-based T cell vaccine approaches.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Memoria Inmunológica/inmunología , Muromegalovirus/inmunología , Receptores Inmunológicos/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/virología , Infecciones por Citomegalovirus/patología , Infecciones por Citomegalovirus/virología , Femenino , Lectinas Tipo C , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Inmunológicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA