Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Epilepsia ; 58(6): 994-1004, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28398014

RESUMEN

OBJECTIVE: Evaluate the seizure-reduction response and safety of mesial temporal lobe (MTL) brain-responsive stimulation in adults with medically intractable partial-onset seizures of mesial temporal lobe origin. METHODS: Subjects with mesial temporal lobe epilepsy (MTLE) were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline. Safety was assessed based on reported adverse events. RESULTS: There were 111 subjects with MTLE; 72% of subjects had bilateral MTL onsets and 28% had unilateral onsets. Subjects had one to four leads placed; only two leads could be connected to the device. Seventy-six subjects had depth leads only, 29 had both depth and strip leads, and 6 had only strip leads. The mean follow-up was 6.1 ± (standard deviation) 2.2 years. The median percent seizure reduction was 70% (last observation carried forward). Twenty-nine percent of subjects experienced at least one seizure-free period of 6 months or longer, and 15% experienced at least one seizure-free period of 1 year or longer. There was no difference in seizure reduction in subjects with and without mesial temporal sclerosis (MTS), bilateral MTL onsets, prior resection, prior intracranial monitoring, and prior vagus nerve stimulation. In addition, seizure reduction was not dependent on the location of depth leads relative to the hippocampus. The most frequent serious device-related adverse event was soft tissue implant-site infection (overall rate, including events categorized as device-related, uncertain, or not device-related: 0.03 per implant year, which is not greater than with other neurostimulation devices). SIGNIFICANCE: Brain-responsive stimulation represents a safe and effective treatment option for patients with medically intractable epilepsy, including patients with unilateral or bilateral MTLE who are not candidates for temporal lobectomy or who have failed a prior MTL resection.


Asunto(s)
Encéfalo/fisiopatología , Estimulación Encefálica Profunda/métodos , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/terapia , Terapia por Estimulación Eléctrica/métodos , Electroencefalografía , Epilepsias Parciales/fisiopatología , Epilepsias Parciales/terapia , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/terapia , Adolescente , Adulto , Dominancia Cerebral/fisiología , Electrodos Implantados , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Humanos , Cuidados a Largo Plazo , Masculino , Persona de Mediana Edad , Adulto Joven
2.
Brain Stimul ; 6(5): 718-26, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23538208

RESUMEN

Long-term stability of the electrode-tissue interface may be required to maintain optimal neural recording with subdural and deep brain implants and to permit appropriate delivery of neuromodulation therapy. Although short-term changes in impedance at the electrode-tissue interface are known to occur, long-term changes in impedance have not previously been examined in detail in humans. To provide further information about short- and long-term impedance changes in chronically implanted electrodes, a dataset from 191 persons with medically intractable epilepsy participating in a trial of an investigational responsive neurostimulation device (the RNS(®) System, NeuroPace, Inc.) was reviewed. Monopolar impedance measurements were available for 391 depth and subdural leads containing a total of 1564 electrodes; measurements were available for median 802 days post-implant (range 28-1634). Although there were statistically significant short-term impedance changes, long-term impedance was stable after one year. Impedances for depth electrodes transiently increased during the third week after lead implantation and impedances for subdural electrodes increased over 12 weeks post-implant, then were stable over the subsequent long-term follow-up. Both depth and subdural electrode impedances demonstrated long-term stability, suggesting that the quality of long-term electrographic recordings (the data used to control responsive brain stimulation) can be maintained over time.


Asunto(s)
Encéfalo/fisiología , Impedancia Eléctrica , Terapia por Estimulación Eléctrica/métodos , Epilepsia/terapia , Neuroestimuladores Implantables , Método Doble Ciego , Terapia por Estimulación Eléctrica/instrumentación , Electrodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA