Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(2): 1562-1575, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297705

RESUMEN

We investigate the properties of a soft glass dual-core photonic crystal fiber for application in multicore waveguiding with balanced gain and loss. Its base material is a phosphate glass in a P2O5-Al2O3-Yb2O3-BaO-ZnO-MgO-Na2O oxide system. The separated gain and loss cores are realized with two cores with ytterbium and copper doping of the base phosphate glass. The ytterbium-doped core supports a laser (gain) activity under excitation with a pump at 1000 nm wavelength, while the CuO-doped is responsible for strong attenuation at the same wavelength. We establish conditions for an exact balance between gain and loss and investigate pulse propagation by solving a system of coupled generalized nonlinear Schrödinger equations. We predict two states of light under excitation with hyperbolic secant pulses centered at 1000 nm: 1) linear oscillation of the pulse energy between gain and loss core (P T-symmetry state), with strong power attenuation; 2) retention of the pulse in the excited gain core (broken P T-symmetry), with very modest attenuation. The optimal pulse energy levels were identified to be 100 pJ (first state) and 430 pJ (second state).

2.
Opt Express ; 29(16): 26191-26209, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614930

RESUMEN

The linear complex refractive index of a set of borosilicate and tellurite as well as heavy metal oxide silicate, germanate and fluoride glasses has been determined using the Kramers-Kronig analysis on combined data from terahertz time domain (THz-TD) and Fourier transform infrared (FTIR) spectrometers in the ultrabroadband range of 0.15 THz to 200 THz. Debye, Lorentz and shape language modeling (SLM) approaches are applied. Far-infrared absorption power-law model parameters are determined via searching for the largest frequency range that minimizes the root mean squared error (RMSE) of a linear least squares fit for the set of glasses and other glass literature data. Relationships between the absorption parameters, glass properties and compositions are explored.

3.
Opt Express ; 28(11): 16542-16553, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32549474

RESUMEN

We report the first extruded tellurite antiresonant hollow core fibers (HC-ARFs) aimed at the delivery of mid-infrared (Mid-IR) laser radiation. The preform extrusion fabrication process allowed us to obtain preforms with non-touching capillaries in a single step, hence minimizing thermal cycles. The fibers were fabricated from in-house synthetized tellurite glass (containing Zn, Ba and K oxides) and co-drawn with a fluorinated ethylene propylene (FEP) polymer outer layer to improve their mechanical properties and protect the glass from humidity. The fabricated HC-ARFs transmit in the Mid-IR spectral range from 4.9 to 6 µm. We measured losses of ∼8.2, 4.8 and 6.4 dB/m at 5 µm, 5.6 µm and 5.8 µm, respectively in two different fibers. These losses, which are dominated by leakage mostly arising from a non-uniform membrane thickness, represent the lowest attenuation reported for a tellurite-based HC-ARF to date. The fibers present good beam quality and an M2 factor of 1.2. Modelling suggests that by improving the uniformity in the capillary membrane thickness losses down to 0.05 dB/m at 5.4 µm should be possible, making this solution attractive, for example, for beam delivery from a CO laser.

4.
Opt Express ; 27(24): 35052-35064, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31878681

RESUMEN

Nanostructured GRIN components are optical elements which can have an arbitrary refractive index profile while retaining flat-parallel entry and exit facets. A method of their fabrication requires assembly of large quantities of glass rods in order to satisfy subwavelength requirement of the effective medium theory. In this paper, we present a development of gradient index microlenses using a combination of methods: nanostructurization of the preform and controlled diffusion process during lens drawing on a fiber drawing tower. Adding a diffusion process allows us to overcome limits of the effective medium theory related to maximum size of nanorods in the lens structure. We show that nanorods are dissolved during the fiber drawing process in high temperature and glass components are locally quasi-uniformly distributed. To demonstrate feasibility of the proposed approach, we have developed and experimentally verified the performance of a nGRIN microlens with a diameter of 115 µm composed of 115 rods on the diagonal, and length of 200 µm devoted to work for the wavelength over 658 nm.

5.
Sensors (Basel) ; 18(12)2018 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-30477259

RESUMEN

In this work a photonic crystal fiber made of a heavy metal oxide glass with optimized dispersion profile is proposed for supercontinuum generation in a broad range of wavelengths in the near-infrared, when pumped by a mode-locked fiber-based laser. The fiber is modelled and optimal geometrical parameters are selected to achieve flat and low dispersion in the anomalous regime. Supercontinuum generation in the range of 0.76⁻2.40 µm, within the dynamics of 30 dB, when pumped at 1.56 µm with 400 fs⁻long pulses and an average power 660 mW is possible. The applicability of such fibers is also discussed.

6.
Opt Express ; 23(20): 25588-96, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480075

RESUMEN

We present a new approach for the development of structured optical fibers. It is shown that fibers having an effective gradient index profile with designed refractive index distribution can be developed with internal nanostructuring of the core composed of two glasses. As proof-of-concept, fibers made of two soft glasses with a parabolic gradient index profile are developed. Energy-dispersive X-ray spectroscopy reveals a possibility of selective diffusion of individual chemical ingredients among the sub-wavelength components of the nanostructure. This hints a postulate that core nanostructuring also changes material dispersion of the glasses in the core, potentially opening up unique dispersion shaping possibilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA