Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(10): 4660-4668, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37155280

RESUMEN

Oxidative stress is known to be the cause of several neurovascular diseases, including neurodegenerative disorders, since the increase of reactive oxygen species (ROS) levels can lead to cellular damage, blood-brain barrier leaking, and inflammatory pathways. Herein, we demonstrate the therapeutic potential of 5 nm platinum nanoparticles (PtNPs) to effectively scavenge ROS in different cellular models of the neurovascular unit. We investigated the mechanism underlying the PtNP biological activities, analyzing the influence of the evolving biological environment during particle trafficking and disclosing a key role of the protein corona, which elicited an effective switch-off of the PtNP catalytic properties, promoting their selective in situ activity. Upon cellular internalization, the lysosomal environment switches on and boosts the enzyme-like activity of the PtNPs, acting as an intracellular "catalytic microreactor" exerting strong antioxidant functionalities. Significant ROS scavenging was observed in the neurovascular cellular models, with an interesting protective mechanism of the Pt-nanozymes along lysosomal-mitochondrial axes.


Asunto(s)
Nanopartículas del Metal , Especies Reactivas de Oxígeno/metabolismo , Platino (Metal) , Estrés Oxidativo , Antioxidantes
2.
Nano Lett ; 23(7): 2981-2990, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36917703

RESUMEN

Thanks to their biocompatibility and high cargo capability, graphene-based materials (GRMs) might represent an ideal brain delivery system. The capability of GRMs to reach the brain has mainly been investigated in vivo and has highlighted some controversy. Herein, we employed two in vitro BBB models of increasing complexity to investigate the bionano interactions with graphene oxide (GO) and few-layer graphene (FLG): a 2D murine Transwell model, followed by a 3D human multicellular assembloid, to mimic the complexity of the in vivo architecture and intercellular crosstalk. We developed specific methodologies to assess the translocation of GO and FLG in a label-free fashion and a platform applicable to any nanomaterial. Overall, our results show good biocompatibility of the two GRMs, which did not impact the integrity and functionality of the barrier. Sufficiently dispersed subpopulations of GO and FLG were actively uptaken by endothelial cells; however, the translocation was identified as a rare event.


Asunto(s)
Barrera Hematoencefálica , Grafito , Humanos , Animales , Ratones , Células Endoteliales , Encéfalo
3.
J Cyst Fibros ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38789319

RESUMEN

BACKGROUND: We recently demonstrated that 48 h exposure of primary human bronchial epithelial (hBE) cells, obtained from both CF (F508del homozygous) and non-CF subjects, to the triple drug combination Elexacaftor/Tezacaftor/Ivacaftor (ETI) results in a CFTR genotype-independent modulation of the de novo synthethic pathway of sphingolipids, with an accumulation of dihydroceramides (dHCer). Since dHCer are converted into ceramides (Cer) by the action of a delta-4 sphingolipid desaturase (DEGS) enzyme, we aimed to better understand this off-target effect of ETI (i.e., not related to CFTR rescue) METHODS: hBE cells, both F508del and wild-type, were cultured to create fully differentiated bronchial epithelia. We analyzed Cer and dHCer using an LC-MS based method previously developed by our lab. DEGS expression levels in differentiated hBE cells lysates were quantified by western blot analysis. RESULTS: We demonstrated that 1) dHCer accumulate in hBE with time following prolonged ETI exposure, that 2) similar inhibition occurs in wild-type primary human hepatocytes and that 3) this does not result in an alteration of DEGS expression. We then proved that 4) ETI is a direct inhibitor of DEGS, that 5) Tezacaftor is the molecule responsible for this effect, that 6) the inhibition is concentration dependent. Finally, after repeated oral administration of ETI to naïve, non-CF, mice, we observed a slight accumulation of dHCer in the brain. CONCLUSIONS: We believe that further investigations on Tezacaftor should be envisaged, particularly for the use of ETI during pregnancy, breastfeeding and in the early stages of development. DEGS dysfunction and dHCer accumulation causes impairment in the development of the nervous system, due to a derangement in myelin formation and maintenance.

4.
J Hazard Mater ; 473: 134686, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788582

RESUMEN

Hexagonal boron nitride (hBN) is an emerging two-dimensional material attracting considerable attention in the industrial sector given its innovative physicochemical properties. Potential risks are associated mainly with occupational exposure where inhalation and skin contact are the most relevant exposure routes for workers. Here we aimed at characterizing the effects induced by composites of thermoplastic polyurethane (TPU) and hBN, using immortalized HaCaT skin keratinocytes and BEAS-2B bronchial epithelial cells. The composite was abraded using a Taber® rotary abraser and abraded TPU and TPU-hBN were also subjected to photo-Fenton-mediated degradation mimicking potential weathering across the product life cycle. Cells were exposed to the materials for 24 h (acute exposure) or twice per week for 4 weeks (chronic exposure) and evaluated with respect to material internalization, cytotoxicity, and proinflammatory cytokine secretion. Additionally, comprehensive mass spectrometry-based proteomics and metabolomics (secretomics) analyses were performed. Overall, despite evidence of cellular uptake of the material, no significant cellular and/or protein expression profiles alterations were observed after acute or chronic exposure of HaCaT or BEAS-2B cells, identifying only few pro-inflammatory proteins. Similar results were obtained for the degraded materials. These results support the determination of hazard profiles associated with cutaneous and pulmonary hBN-reinforced polymer composites exposure.


Asunto(s)
Compuestos de Boro , Poliuretanos , Humanos , Poliuretanos/toxicidad , Poliuretanos/química , Compuestos de Boro/química , Compuestos de Boro/toxicidad , Línea Celular , Piel/efectos de los fármacos , Piel/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Citocinas/metabolismo , Supervivencia Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA