Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microbiology (Reading) ; 169(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748579

RESUMEN

The type VI secretion system (T6SS) is an antimicrobial molecular weapon that is widespread in Proteobacteria and offers competitive advantages to T6SS-positive micro-organisms. Three T6SSs have recently been described in Pseudomonas putida KT2440 and it has been shown that one, K1-T6SS, is used to outcompete a wide range of phytopathogens, protecting plants from pathogen infections. Given the relevance of this system as a powerful and innovative mechanism of biological control, it is critical to understand the processes that govern its expression. Here, we experimentally defined two transcriptional units in the K1-T6SS cluster. One encodes the structural components of the system and is transcribed from two adjacent promoters. The other encodes two hypothetical proteins, the tip of the system and the associated adapters, and effectors and cognate immunity proteins, and it is also transcribed from two adjacent promoters. The four identified promoters contain the typical features of σ70-dependent promoters. We have studied the expression of the system under different conditions and in a number of mutants lacking global regulators. P. putida K1-T6SS expression is induced in the stationary phase, but its transcription does not depend on the stationary σ factor RpoS. In fact, the expression of the system is indirectly repressed by RpoS. Furthermore, it is also repressed by RpoN and the transcriptional regulator FleQ, an enhancer-binding protein typically acting in conjunction with RpoN. Importantly, expression of the K1-T6SS gene cluster is positively regulated by the GacS-GacA two-component regulatory system (TCS) and repressed by the RetS sensor kinase, which inhibits this TCS. Our findings identified a complex regulatory network that governs T6SS expression in general and P. putida K1-T6SS in particular, with implications for controlling and manipulating a bacterial agent that is highly relevant in biological control.


Asunto(s)
Pseudomonas putida , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pseudomonas putida/metabolismo , Factor sigma/genética , Familia de Multigenes , Regulación Bacteriana de la Expresión Génica
2.
Environ Microbiol ; 21(12): 4629-4647, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31390127

RESUMEN

Pathogens have developed several strategies to obtain iron during infection, including the use of iron-containing molecules from the host. Haem accounts for the vast majority of the iron pool in vertebrates and thus represents an important source of iron for pathogens. Using a proteomic approach, we have identified in this work a previously uncharacterized system, which we name Hxu, that together with the known Has and Phu systems, is used by the human pathogen Pseudomonas aeruginosa to respond to haem. We show that the Has and Hxu systems are functional signal transduction pathways of the cell-surface signalling class and report the mechanism triggering the activation of these signalling systems. Both signalling cascades involve an outer membrane receptor (HasR and HxuA respectively) that upon sensing haem in the extracellular medium produces the activation of an σECF factor in the cytosol. HxuA has a major role in signalling and a minor role in haem acquisition in conditions in which the HasR and PhuR receptors or other sources of iron are present. Remarkably, P. aeruginosa compensates the lack of the HasR receptor by increasing the production of HxuA, which underscores the importance of haem signalling for this pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Hierro/metabolismo , Proteómica , Pseudomonas aeruginosa/genética , Transducción de Señal
3.
Methods Mol Biol ; 2751: 115-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265713

RESUMEN

Interbacterial competition assays have become an essential tool for understanding the interactions between bacteria and their ability to outcompete one another in natural environments. This is especially relevant when studying the type VI secretion system (T6SS), a contact-dependent bacterial weapon that can be used to kill or inhibit the growth of other competing bacteria. Some beneficial environmental microorganisms such as Pseudomonas putida rely on the T6SS as their primary biocontrol mechanism to eliminate resilient plant pathogens. Competition assays are an essential methodology in this field that allows us to understand the efficacy of this bacterial nanoweapon. This chapter outlines the methodology for conducting in vitro and in planta competition assays between P. putida, a well-known biocontrol agent, and phytopathogenic bacterial species of economic and scientific interest.


Asunto(s)
Pseudomonas putida , Resiliencia Psicológica , Sistemas de Secreción Tipo VI , Bioensayo , Ambiente
4.
iScience ; 26(7): 107216, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534181

RESUMEN

Cell-surface signaling (CSS) is a signal transfer system of Gram-negative bacteria that produces the activation of an extracytoplasmic function σ factor (σECF) in the cytosol in response to an extracellular signal. Activation requires the regulated and sequential proteolysis of the σECF-associated anti-σ factor, and the function of the Prc and RseP proteases. In this work, we have identified another protease that modulates CSS activity, namely the periplasmic carboxyl-terminal processing protease CtpA. CtpA functions upstream of Prc in the proteolytic cascade and seems to prevent the Prc-mediated proteolysis of the CSS anti-σ factor. Importantly, using zebrafish embryos and the A549 lung epithelial cell line as hosts, we show that mutants in the rseP and ctpA proteases of the human pathogen Pseudomonas aeruginosa are considerably attenuated in virulence while the prc mutation increases virulence likely by enhancing the production of membrane vesicles.

5.
Sci Rep ; 10(1): 3139, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081993

RESUMEN

The extracytoplasmic function sigma factor σVreI of the human pathogen Pseudomonas aeruginosa promotes transcription of potential virulence determinants, including secretion systems and secreted proteins. Its activity is modulated by the VreR anti-σ factor that inhibits the binding of σVreI to the RNA polymerase in the absence of a (still unknown) inducing signal. The vreI-vreR genes are expressed under inorganic phosphate (Pi) starvation, a physiological condition often encountered in the host that increases P. aeruginosa pathogenicity. However, whether or not σVreI is active in vivo during infection and contributes to the Pi starvation-induced virulence of this pathogen has not been analyzed yet. Using zebrafish embryos and a human alveolar basal epithelial cell line as P. aeruginosa hosts, we demonstrate in this work that σVreI is active during infection and that lack of σVreI considerably reduces the Pi starvation-induced virulence of this pathogen. Surprisingly, lack of the σVreI inhibitor, the VreR anti-σ factor, also diminishes the virulence of P. aeruginosa. By transcriptomic analyses we show that VreR modulates gene expression not only in a σVreI-dependent but also in a σVreI-independent manner. This includes potential virulence determinants and transcriptional regulators that could be responsible for the reduced virulence of the ΔvreR mutant.


Asunto(s)
Citoplasma/metabolismo , Células Epiteliales/microbiología , Fosfatos/metabolismo , Pseudomonas aeruginosa/metabolismo , Factor sigma/metabolismo , Virulencia , Células A549 , Animales , Proteínas Bacterianas/metabolismo , Análisis por Conglomerados , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Pulmón/metabolismo , Modelos Genéticos , Mutación , Filogenia , Alveolos Pulmonares/citología , Transducción de Señal , Transcriptoma , Factores de Virulencia/metabolismo , Pez Cebra
6.
Front Microbiol ; 8: 747, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28512454

RESUMEN

Cell-surface signaling (CSS) is a signal transfer system that allows Gram-negative bacteria to detect environmental signals and generate a cytosolic response. These systems are composed of an outer membrane receptor that senses the inducing signal, an extracytoplasmic function sigma factor (σECF) that targets the cytosolic response by modifying gene expression and a cytoplasmic membrane anti-sigma factor that keeps the σECF in an inactive state in the absence of the signal and transduces its presence from the outer membrane to the cytosol. Although CSS systems regulate bacterial processes as crucial as stress response, iron scavenging and virulence, the exact mechanisms that drive CSS are still not completely understood. Binding of the signal to the CSS receptor is known to trigger a signaling cascade that results in the regulated proteolysis of the anti-sigma factor and the activation of the σECF in the cytosol. This study was carried out to generate new insights in the proteolytic activation of CSS σECF. We performed a random mutagenesis screen of the unique IutY protein of Pseudomonas putida, a protein that combines a cytosolic σECF domain and a periplasmic anti-sigma factor domain in a single polypeptide. In response to the presence of an iron carrier, the siderophore aerobactin, in the extracellular medium, IutY is processed by two different proteases, Prc and RseP, which results in the release and activation of the σIutY domain. Our experiments show that all IutY mutant proteins that contain periplasmic residues depend on RseP for activation. In contrast, Prc is only required for mutant variants with a periplasmic domain longer than 50 amino acids, which indicates that the periplasmic region of IutY is trimmed down to ~50 amino acids creating the RseP substrate. Moreover, we have identified several conserved residues in the CSS anti-sigma factor family of which mutation leads to constitutive activation of their cognate σECF. These findings advance our knowledge on how CSS activity is regulated by the consecutive action of two proteases. Elucidation of the exact mechanism behind CSS activation will enable the development of strategies to block CSS in pathogenic bacteria.

7.
Front Microbiol ; 7: 1159, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27536271

RESUMEN

Gene regulation in bacteria is primarily controlled at the level of transcription initiation by modifying the affinity of the RNA polymerase (RNAP) for the promoter. This control often occurs through the substitution of the RNAP sigma (σ) subunit. Next to the primary σ factor, most bacteria contain a variable number of alternative σ factors of which the extracytoplasmic function group (σ(ECF)) is predominant. Pseudomonas aeruginosa contains nineteen σ(ECF), including the virulence regulator σ(VreI). σ(VreI) is encoded by the vreAIR operon, which also encodes a receptor-like protein (VreA) and an anti-σ factor (VreR). These three proteins form a signal transduction pathway known as PUMA3, which controls expression of P. aeruginosa virulence functions. Expression of the vreAIR operon occurs under inorganic phosphate (Pi) limitation and requires the PhoB transcription factor. Intriguingly, the genes of the σ(VreI) regulon are also expressed in low Pi despite the fact that the σ(VreI) repressor, the anti-σ factor VreR, is also produced in this condition. Here we show that although σ(VreI) is partially active under Pi starvation, maximal transcription of the σ(VreI) regulon genes requires the removal of VreR. This strongly suggests that an extra signal, probably host-derived, is required in vivo for full σ(VreI) activation. Furthermore, we demonstrate that the activity of σ(VreI) is modulated not only by VreR but also by the transcription factor PhoB. Presence of this regulator is an absolute requirement for σ(VreI) to complex the DNA and initiate transcription of the PUMA3 regulon. The potential DNA binding sites of these two proteins, which include a pho box and -10 and -35 elements, are proposed.

8.
Case Rep Otolaryngol ; 2013: 505636, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23476855

RESUMEN

Acute vestibular deficit as the first sign of leukemia is extremely rare. The literature shows some cases of sudden hearing loss accompanied by instability and associated with hyperviscosity syndrome. We present the case of a patient who presents a harmonic vestibular deficit of the right ear. The complementary studies revealed an abnormally high level of leukocytes. A peripheral blood cytogenetic analysis is performed due to a high suspicion of leukemia, and the results show BCR/ABL fusion gene with a cut point in the M-BCR region, which confirms the diagnosis of chronic myeloid leukemia. In this case we detail the importance of taking hematological disorders into consideration in the differential diagnosis of patients with otoneurological symptoms, and we also review the etiopathogenic mechanisms, symptoms, diagnosis, and therapeutic options for chronic myeloid leukemia with sudden hearing loss and vertigo.

9.
Eur J Paediatr Neurol ; 17(4): 397-400, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23434307

RESUMEN

INTRODUCTION: Benign Paroxysmal Vertigo of Childhood (BPVC) is a common cause of vertigo in children and it is characterized by recurrent attacks of vertigo without warning resolving spontaneously after minutes to hours. It has been considered the equivalent of migraine in childhood. METHODS: Twenty-seven patients diagnosed with BPVC were recruited between 1991 and 1997 with a follow up of at least 15 years. The incidence of migraine, inner ear disorders and family medical history is analyzed. RESULTS: The average age for the onset of the attacks of BPVC was 3 years and 11 months, and for spontaneous resolution, it was around 5 years and 7 months. The average age for follow up was 18 years. Nine patients developed migraine during adulthood. Nineteen of them had a family history of migraine. CONCLUSION: We have observed that the prevalence of migraine in patients that had been diagnosed with BPVC is higher than in the general population, which leads us to propose BPVC as a precursor of migraine during childhood.


Asunto(s)
Trastornos Migrañosos/epidemiología , Trastornos Migrañosos/etiología , Vértigo/epidemiología , Vértigo/fisiopatología , Vértigo Posicional Paroxístico Benigno , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Humanos , Lactante , Estudios Longitudinales , Masculino , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA