Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Genes Dev ; 33(9-10): 498-510, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30842215

RESUMEN

Developmental signal transduction pathways act diversely, with context-dependent roles across systems and disease types. Glioblastomas (GBMs), which are the poorest prognosis primary brain cancers, strongly resemble developmental systems, but these growth processes have not been exploited therapeutically, likely in part due to the extreme cellular and genetic heterogeneity observed in these tumors. The role of Wnt/ßcatenin signaling in GBM stem cell (GSC) renewal and fate decisions remains controversial. Here, we report context-specific actions of Wnt/ßcatenin signaling in directing cellular fate specification and renewal. A subset of primary GBM-derived stem cells requires Wnt proteins for self-renewal, and this subset specifically relies on Wnt/ßcatenin signaling for enhanced tumor burden in xenograft models. In an orthotopic Wnt reporter model, Wnthi GBM cells (which exhibit high levels of ßcatenin signaling) are a faster-cycling, highly self-renewing stem cell pool. In contrast, Wntlo cells (with low levels of signaling) are slower cycling and have decreased self-renewing potential. Dual inhibition of Wnt/ßcatenin and Notch signaling in GSCs that express high levels of the proneural transcription factor ASCL1 leads to robust neuronal differentiation and inhibits clonogenic potential. Our work identifies new contexts for Wnt modulation for targeting stem cell differentiation and self-renewal in GBM heterogeneity, which deserve further exploration therapeutically.


Asunto(s)
Diferenciación Celular/genética , Células Madre Neoplásicas/citología , Transducción de Señal , Línea Celular Tumoral , Autorrenovación de las Células/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/fisiopatología , Humanos , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
2.
Proc Natl Acad Sci U S A ; 112(3): 851-6, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25561528

RESUMEN

Glioblastoma (GBM) is a cancer comprised of morphologically, genetically, and phenotypically diverse cells. However, an understanding of the functional significance of intratumoral heterogeneity is lacking. We devised a method to isolate and functionally profile tumorigenic clones from patient glioblastoma samples. Individual clones demonstrated unique proliferation and differentiation abilities. Importantly, naïve patient tumors included clones that were temozolomide resistant, indicating that resistance to conventional GBM therapy can preexist in untreated tumors at a clonal level. Further, candidate therapies for resistant clones were detected with clone-specific drug screening. Genomic analyses revealed genes and pathways that associate with specific functional behavior of single clones. Our results suggest that functional clonal profiling used to identify tumorigenic and drug-resistant tumor clones will lead to the discovery of new GBM clone-specific treatment strategies.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/uso terapéutico , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Análisis de la Célula Individual , Temozolomida
3.
Nature ; 432(7015): 396-401, 2004 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-15549107

RESUMEN

The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patient's original tumour, whereas injection of 10(5) CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.


Asunto(s)
Neoplasias Encefálicas/patología , Células Madre/patología , Antígeno AC133 , Animales , Antígenos CD , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Separación Celular , Trasplante de Células , Glicoproteínas/análisis , Glicoproteínas/metabolismo , Humanos , Inmunohistoquímica , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Trasplante de Neoplasias , Péptidos/análisis , Péptidos/metabolismo , Células Madre/metabolismo
4.
Cancer Res ; 66(18): 9074-82, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16982749

RESUMEN

The accurate identification and thorough characterization of tumorigenic cells in glioblastomas are essential to enhance our understanding of their malignant behavior and for the design of strategies that target this important cell population. We report here that, in rat brain, the scaffolding protein IQGAP1 is a marker of brain nestin+ amplifying neural progenitor cells. In a rat model of glioma, IQGAP1 also characterizes a subpopulation of nestin+ amplifying tumor cells in glioblastoma-like tumors but not in tumors with oligodendroglioma features. We next confirmed that IQGAP1 represents a new marker that may help to discriminate human glioblastoma from oligodendrogliomas. In human glioblastoma exclusively, IQGAP1 specifies a subpopulation of amplifying nestin+ cancer cells. Neoplastic IQGAP1+ cells from glioblastoma can be expanded in culture and possess all the characteristics of cancer stem-like progenitors. The similarities between amplifying neural progenitors and glioblastoma amplifying cancer cells may have significant implications for understanding the biology of glioblastoma.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas Activadoras de ras GTPasa/biosíntesis , Animales , Humanos , Inmunohistoquímica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neuronas/patología , Ratas , Células Madre/patología
5.
Cell Stem Cell ; 21(2): 209-224.e7, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28712938

RESUMEN

Glioblastomas exhibit a hierarchical cellular organization, suggesting that they are driven by neoplastic stem cells that retain partial yet abnormal differentiation potential. Here, we show that a large subset of patient-derived glioblastoma stem cells (GSCs) express high levels of Achaete-scute homolog 1 (ASCL1), a proneural transcription factor involved in normal neurogenesis. ASCL1hi GSCs exhibit a latent capacity for terminal neuronal differentiation in response to inhibition of Notch signaling, whereas ASCL1lo GSCs do not. Increasing ASCL1 levels in ASCL1lo GSCs restores neuronal lineage potential, promotes terminal differentiation, and attenuates tumorigenicity. ASCL1 mediates these effects by functioning as a pioneer factor at closed chromatin, opening new sites to activate a neurogenic gene expression program. Directing GSCs toward terminal differentiation may provide therapeutic applications for a subset of GBM patients and strongly supports efforts to restore differentiation potential in GBM and other cancers.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/patología , Carcinogénesis/patología , Linaje de la Célula , Cromatina/metabolismo , Glioblastoma/patología , Neuronas/patología , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Encefálicas/genética , Carcinogénesis/genética , Diferenciación Celular/genética , Progresión de la Enfermedad , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neuronas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Análisis de Secuencia de ARN , Regulación hacia Arriba/genética
6.
Cancer Res ; 63(18): 5821-8, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-14522905

RESUMEN

Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, there is overwhelming evidence in some malignancies that the tumor clone is heterogeneous with respect to proliferation and differentiation. In human leukemia, the tumor clone is organized as a hierarchy that originates from rare leukemic stem cells that possess extensive proliferative and self-renewal potential, and are responsible for maintaining the tumor clone. We report here the identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation. The increased self-renewal capacity of the brain tumor stem cell (BTSC) was highest from the most aggressive clinical samples of medulloblastoma compared with low-grade gliomas. The BTSC was exclusively isolated with the cell fraction expressing the neural stem cell surface marker CD133. These CD133+ cells could differentiate in culture into tumor cells that phenotypically resembled the tumor from the patient. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC.


Asunto(s)
Neoplasias Encefálicas/patología , Células Madre Neoplásicas/patología , Antígeno AC133 , Adolescente , Antígenos CD , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Diferenciación Celular/fisiología , División Celular/fisiología , Movimiento Celular/fisiología , Niño , Preescolar , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glicoproteínas/biosíntesis , Humanos , Inmunohistoquímica , Neoplasias Infratentoriales/genética , Neoplasias Infratentoriales/metabolismo , Neoplasias Infratentoriales/patología , Cariotipificación , Masculino , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patología , Células Madre Neoplásicas/metabolismo , Neuronas/citología , Péptidos , Fenotipo
7.
Cancer Cell ; 29(6): 859-873, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27300435

RESUMEN

Glioblastomas (GBM) grow in a rich neurochemical milieu, but the impact of neurochemicals on GBM growth is largely unexplored. We interrogated 680 neurochemical compounds in patient-derived GBM neural stem cells (GNS) to determine the effects on proliferation and survival. Compounds that modulate dopaminergic, serotonergic, and cholinergic signaling pathways selectively affected GNS growth. In particular, dopamine receptor D4 (DRD4) antagonists selectively inhibited GNS growth and promoted differentiation of normal neural stem cells. DRD4 antagonists inhibited the downstream effectors PDGFRß, ERK1/2, and mTOR and disrupted the autophagy-lysosomal pathway, leading to accumulation of autophagic vacuoles followed by G0/G1 arrest and apoptosis. These results demonstrate a role for neurochemical pathways in governing GBM stem cell proliferation and suggest therapeutic approaches for GBM.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Células-Madre Neurales/efectos de los fármacos , Receptores de Dopamina D4/metabolismo , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Animales , Autofagia , Neoplasias Encefálicas/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/metabolismo , Humanos , Ratones , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/patología , Receptores de Dopamina D4/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Análisis de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncogene ; 23(43): 7267-73, 2004 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-15378086

RESUMEN

Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and more recently in solid tumors such as breast cancer suggests that the tumor cell population is heterogeneous with respect to proliferation and differentiation. Recently, several groups have described the existence of a cancer stem cell population in human brain tumors of different phenotypes from both children and adults. The finding of brain tumor stem cells (BTSCs) has been made by applying the principles for cell culture and analysis of normal neural stem cells (NSCs) to brain tumor cell populations and by identification of cell surface markers that allow for isolation of distinct tumor cell populations that can then be studied in vitro and in vivo. A population of brain tumor cells can be enriched for BTSCs by cell sorting of dissociated suspensions of tumor cells for the NSC marker CD133. These CD133+ cells, which also expressed the NSC marker nestin, but not differentiated neural lineage markers, represent a minority fraction of the entire brain tumor cell population, and exclusively generate clonal tumor spheres in suspension culture and exhibit increased self-renewal capacity. BTSCs can be induced to differentiate in vitro into tumor cells that phenotypically resembled the tumor from the patient. Here, we discuss the evidence for and implications of the discovery of a cancer stem cell in human brain tumors. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC. Specific genetic and molecular analyses of the BTSC will further our understanding of the mechanisms of brain tumor growth, reinforcing parallels between normal neurogenesis and brain tumorigenesis.


Asunto(s)
Neoplasias Encefálicas/patología , Células Madre Neoplásicas/citología , Adulto , Animales , Encéfalo/citología , Diferenciación Celular , Separación Celular , Transformación Celular Neoplásica , Niño , Glioma/patología , Humanos , Inmunofenotipificación , Ratones , Ratones Desnudos , Proteínas de Neoplasias/fisiología , Trasplante de Neoplasias , Células Madre Pluripotentes/patología , Primates , Ratas , Células Tumorales Cultivadas/citología
9.
Cancer Cell ; 28(6): 715-729, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26626085

RESUMEN

Mutations in the histone 3 variant H3.3 have been identified in one-third of pediatric glioblastomas (GBMs), but not in adult tumors. Here we show that H3.3 is a dynamic determinant of functional properties in adult GBM. H3.3 is repressed by mixed lineage leukemia 5 (MLL5) in self-renewing GBM cells. MLL5 is a global epigenetic repressor that orchestrates reorganization of chromatin structure by punctuating chromosomes with foci of compacted chromatin, favoring tumorigenic and self-renewing properties. Conversely, H3.3 antagonizes self-renewal and promotes differentiation. We exploited these epigenetic states to rationally identify two small molecules that effectively curb cancer stem cell properties in a preclinical model. Our work uncovers a role for MLL5 and H3.3 in maintaining self-renewal hierarchies in adult GBM.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Autorrenovación de las Células , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Glioblastoma/metabolismo , Histonas/metabolismo , Células Madre Neoplásicas/metabolismo , Adolescente , Adulto , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Diferenciación Celular , Proliferación Celular , Autorrenovación de las Células/efectos de los fármacos , Niño , Preescolar , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Metilación de ADN , Proteínas de Unión al ADN/genética , Diseño de Fármacos , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/patología , Histonas/genética , Humanos , Estimación de Kaplan-Meier , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Mutación , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Pronóstico , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
10.
Cancer Discov ; 4(10): 1198-213, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25100205

RESUMEN

UNLABELLED: Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. SIGNIFICANCE: Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN Glicosilasas/metabolismo , Resistencia a Antineoplásicos , Factores de Edad , Animales , Línea Celular Tumoral , Análisis por Conglomerados , Variaciones en el Número de Copia de ADN , Reparación del ADN , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Activación Enzimática , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Modelos Biológicos , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/genética , Temozolomida , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancer Cell ; 26(1): 33-47, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24954133

RESUMEN

Functional heterogeneity within tumors presents a significant therapeutic challenge. Here we show that quiescent, therapy-resistant Sox2(+) cells propagate sonic hedgehog subgroup medulloblastoma by a mechanism that mirrors a neurogenic program. Rare Sox2(+) cells produce rapidly cycling doublecortin(+) progenitors that, together with their postmitotic progeny expressing NeuN, comprise tumor bulk. Sox2(+) cells are enriched following anti-mitotic chemotherapy and Smoothened inhibition, creating a reservoir for tumor regrowth. Lineage traces from Sox2(+) cells increase following treatment, suggesting that this population is responsible for relapse. Targeting Sox2(+) cells with the antineoplastic mithramycin abrogated tumor growth. Addressing functional heterogeneity and eliminating Sox2(+) cells presents a promising therapeutic paradigm for treatment of sonic hedgehog subgroup medulloblastoma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias Cerebelosas/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Antígenos Nucleares/metabolismo , Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Linaje de la Célula , Proliferación Celular/efectos de los fármacos , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Proteínas de Unión al ADN , Relación Dosis-Respuesta a Droga , Proteínas de Dominio Doblecortina , Resistencia a Antineoplásicos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Recurrencia Local de Neoplasia , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuropéptidos/metabolismo , Proteínas Nucleares/metabolismo , Receptores Patched , Plicamicina/farmacología , Pronóstico , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Factores de Transcripción SOXB1/genética , Receptor Smoothened , Factores de Tiempo , Células Tumorales Cultivadas
12.
Cancer Res ; 73(1): 417-27, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23108137

RESUMEN

Glioblastoma growth is driven by cancer cells that have stem cell properties, but molecular determinants of their tumorigenic behavior are poorly defined. In cancer, altered activity of the epigenetic modifiers Polycomb and Trithorax complexes may contribute to the neoplastic phenotype. Here, we provide the first mechanistic insights into the role of the Trithorax protein mixed lineage leukemia (MLL) in maintaining cancer stem cell characteristics in human glioblastoma. We found that MLL directly activates the Homeobox gene HOXA10. In turn, HOXA10 activates a downstream Homeobox network and other genes previously characterized for their role in tumorigenesis. The MLL-Homeobox axis we identified significantly contributes to the tumorigenic potential of glioblastoma stem cells. Our studies suggest a role for MLL in contributing to the epigenetic heterogeneity between tumor-initiating and non-tumor-initiating cells in glioblastoma.


Asunto(s)
Genes Homeobox/fisiología , Glioblastoma/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Glioblastoma/genética , N-Metiltransferasa de Histona-Lisina , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos NOD , Ratones SCID , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
J Exp Med ; 208(4): 689-702, 2011 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-21464220

RESUMEN

Glioblastoma Multiforme (GBM), the most common and lethal primary human brain tumor, exhibits multiple molecular aberrations. We report that loss of the transcription factor GATA4, a negative regulator of normal astrocyte proliferation, is a driver in glioma formation and fulfills the hallmarks of a tumor suppressor gene (TSG). Although GATA4 was expressed in normal brain, loss of GATA4 was observed in 94/163 GBM operative samples and was a negative survival prognostic marker. GATA4 loss occurred through promoter hypermethylation or novel somatic mutations. Loss of GATA4 in normal human astrocytes promoted high-grade astrocytoma formation, in cooperation with other relevant genetic alterations such as activated Ras or loss of TP53. Loss of GATA4 with activated Ras in normal astrocytes promoted a progenitor-like phenotype, formation of neurospheres, and the ability to differentiate into astrocytes, neurons, and oligodendrocytes. Re-expression of GATA4 in human GBM cell lines, primary cultures, and brain tumor-initiating cells suppressed tumor growth in vitro and in vivo through direct activation of the cell cycle inhibitor P21(CIP1), independent of TP53. Re-expression of GATA4 also conferred sensitivity of GBM cells to temozolomide, a DNA alkylating agent currently used in GBM therapy. This sensitivity was independent of MGMT (O-6-methylguanine-DNA-methyltransferase), the DNA repair enzyme which is often implicated in temozolomide resistance. Instead, GATA4 reduced expression of APNG (alkylpurine-DNA-N-glycosylase), a DNA repair enzyme which is poorly characterized in GBM-mediated temozolomide resistance. Identification and validation of GATA4 as a TSG and its downstream targets in GBM may yield promising novel therapeutic strategies.


Asunto(s)
Neoplasias Encefálicas/prevención & control , Factor de Transcripción GATA4/fisiología , Glioblastoma/prevención & control , Proteínas Supresoras de Tumor/fisiología , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Metilación de ADN , Metilasas de Modificación del ADN/fisiología , Enzimas Reparadoras del ADN/fisiología , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Factor de Transcripción GATA4/genética , Glioblastoma/patología , Humanos , Ratones , Regiones Promotoras Genéticas , Temozolomida
15.
Cancer Res ; 69(11): 4682-90, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19487286

RESUMEN

Subpopulations of tumorigenic cells have been identified in many human tumors, although these cells may not be very rare in some types of cancer. Here, we report that medulloblastomas arising from Patched-1-deficient mice contain a subpopulation of cells that show a neural precursor phenotype, clonogenic and multilineage differentiation capacity, activated Hedgehog signaling, wild-type Patched-1 expression, and the ability to initiate tumors following allogeneic orthotopic transplantation. The normal neural stem cell surface antigen CD15 enriches for the in vitro proliferative and in vivo tumorigenic potential from uncultured medulloblastomas, supporting the existence of a cancer stem cell hierarchy in this clinically relevant mouse model of cancer.


Asunto(s)
Neoplasias Cerebelosas/patología , Antígeno Lewis X/metabolismo , Meduloblastoma/patología , Células Madre Multipotentes/patología , Células Madre Neoplásicas/patología , Receptores de Superficie Celular/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Embrión de Mamíferos , Fucosiltransferasas/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Modelos Biológicos , Células Madre Multipotentes/metabolismo , Células Madre Neoplásicas/metabolismo , Receptores Patched , Receptor Patched-1 , Fenotipo , Receptores de Superficie Celular/metabolismo
16.
Cell Stem Cell ; 4(6): 568-80, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19497285

RESUMEN

Human brain tumors appear to have a hierarchical cellular organization suggestive of a stem cell foundation. In vitro expansion of the putative cancer stem cells as stable cell lines would provide a powerful model system to study their biology. Here, we demonstrate routine and efficient derivation of adherent cell lines from malignant glioma that display stem cell properties and initiate high-grade gliomas following xenotransplantation. Significantly, glioma neural stem (GNS) cell lines from different tumors exhibit divergent gene expression signatures and differentiation behavior that correlate with specific neural progenitor subtypes. The diversity of gliomas may, therefore, reflect distinct cancer stem cell phenotypes. The purity and stability of adherent GNS cell lines offer significant advantages compared to "sphere" cultures, enabling refined studies of cancer stem cell behavior. A proof-of-principle live cell imaging-based chemical screen (450 FDA-approved drugs) identifies both differential sensitivities of GNS cells and a common susceptibility to perturbation of serotonin signaling.


Asunto(s)
Línea Celular Tumoral , Glioma/patología , Células Madre Neoplásicas/patología , Animales , Adhesión Celular , Técnicas de Cultivo , Ensayos de Selección de Medicamentos Antitumorales , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones SCID , Serotonina/metabolismo , Trasplante Heterólogo
17.
PLoS One ; 4(8): e6810, 2009 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-19710912

RESUMEN

BACKGROUND: Rett Syndrome (RTT) is an Autism Spectrum Disorder and the leading cause of mental retardation in females. RTT is caused by mutations in the Methyl CpG-Binding Protein-2 (MECP2) gene and has no treatment. Our objective is to develop viral vectors for MECP2 gene transfer into Neural Stem Cells (NSC) and neurons suitable for gene therapy of Rett Syndrome. METHODOLOGY/PRINCIPAL FINDINGS: We generated self-inactivating (SIN) retroviral vectors with the ubiquitous EF1alpha promoter avoiding known silencer elements to escape stem-cell-specific viral silencing. High efficiency NSC infection resulted in long-term EGFP expression in transduced NSC and after differentiation into neurons. Infection with Myc-tagged MECP2-isoform-specific (E1 and E2) vectors directed MeCP2 to heterochromatin of transduced NSC and neurons. In contrast, vectors with an internal mouse Mecp2 promoter (MeP) directed restricted expression only in neurons and glia and not NSC, recapitulating the endogenous expression pattern required to avoid detrimental consequences of MECP2 ectopic expression. In differentiated NSC from adult heterozygous Mecp2(tm1.1Bird)+/- female mice, 48% of neurons expressed endogenous MeCP2 due to random inactivation of the X-linked Mecp2 gene. Retroviral MECP2 transduction with EF1alpha and MeP vectors rescued expression in 95-100% of neurons resulting in increased dendrite branching function in vitro. Insulated MECP2 isoform-specific lentiviral vectors show long-term expression in NSC and their differentiated neuronal progeny, and directly infect dissociated murine cortical neurons with high efficiency. CONCLUSIONS/SIGNIFICANCE: MeP vectors recapitulate the endogenous expression pattern of MeCP2 in neurons and glia. They have utility to study MeCP2 isoform-specific functions in vitro, and are effective gene therapy vectors for rescuing dendritic maturation of neurons in an ex vivo model of RTT.


Asunto(s)
Regulación de la Expresión Génica , Terapia Genética , Vectores Genéticos , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/terapia , Animales , Femenino , Humanos , Lentivirus/genética , Ratones , Regiones Promotoras Genéticas , Transducción Genética
18.
Nat Chem Biol ; 3(5): 268-73, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17417631

RESUMEN

The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain holds promise for the treatment of neurological diseases and has yielded new insight into brain cancer. However, the complete repertoire of signaling pathways that governs the proliferation and self-renewal of NSCs, which we refer to as the 'ground state', remains largely uncharacterized. Although the candidate gene approach has uncovered vital pathways in NSC biology, so far only a few highly studied pathways have been investigated. Based on the intimate relationship between NSC self-renewal and neurosphere proliferation, we undertook a chemical genetic screen for inhibitors of neurosphere proliferation in order to probe the operational circuitry of the NSC. The screen recovered small molecules known to affect neurotransmission pathways previously thought to operate primarily in the mature central nervous system; these compounds also had potent inhibitory effects on cultures enriched for brain cancer stem cells. These results suggest that clinically approved neuromodulators may remodel the mature central nervous system and find application in the treatment of brain cancer.


Asunto(s)
Neuronas/efectos de los fármacos , Neuronas/metabolismo , Preparaciones Farmacéuticas , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ratones , Estructura Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neuronas/citología , Preparaciones Farmacéuticas/química , Sensibilidad y Especificidad , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA