Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 600(7890): 675-679, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887591

RESUMEN

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Desequilibrio de Ligamiento , Herencia Multifactorial , Polimorfismo de Nucleótido Simple/genética , Grupos de Población
2.
Am J Hum Genet ; 109(7): 1286-1297, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35716666

RESUMEN

Despite the growing number of genome-wide association studies (GWASs), it remains unclear to what extent gene-by-gene and gene-by-environment interactions influence complex traits in humans. The magnitude of genetic interactions in complex traits has been difficult to quantify because GWASs are generally underpowered to detect individual interactions of small effect. Here, we develop a method to test for genetic interactions that aggregates information across all trait-associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between European American and admixed African American individuals have the same causal effect sizes. We hypothesize that in African Americans, the presence of genetic interactions will drive the causal effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African ancestry. We apply our method to two traits: gene expression in 296 African Americans and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our analysis of gene expression; for LDL-C, we observe a similar point estimate, although this is not significant, most likely due to lower statistical power. These results suggest that gene-by-gene or gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , LDL-Colesterol , Expresión Génica , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética
3.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931049

RESUMEN

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Cromatina/genética , Genómica , Humanos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
5.
Curr Opin Lipidol ; 34(2): 52-58, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36853849

RESUMEN

PURPOSE OF REVIEW: Familial hypercholesterolemia (FH) is a monogenic disorder of elevated low-density lipoprotein cholesterol (LDL-C) from birth leading to increased risk for atherosclerotic cardiovascular disease. However, not all carriers of FH variants display an FH phenotype. Despite this fact, FH variants confer increased risk for atherosclerotic disease in population cohorts. An important question to consider is whether measurements of LDL-C can fully account for this risk. RECENT FINDINGS: The atherosclerotic risk associated with FH variants is independent of observed adult LDL-C levels. Modeling adult longitudinal LDL-C accounts for more of this risk compared to using a single measurement. Still, even when adjusting for observed longitudinal LDL-C in adult cohorts, FH variant carriers are at increased risk for coronary artery disease. Genetic analyses, observational studies, and clinical trials all suggest that cumulative LDL-C is a critical driver of cardiovascular risk that may not be fully appreciated by routine LDL-C measurements in adulthood. As such, FH variants confer risk independent of adult LDL-C because these variants increase cumulative LDL-C exposure starting from birth. SUMMARY: Both research and clinical practice focus on LDL-C measurements in adults, but measurements during adulthood do not reflect lifelong cumulative exposure to LDL-C. Genetic assessments may compliment clinical assessments by better identifying patients who have experienced greater longitudinal LDL-C exposure.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol , Factores de Riesgo de Enfermedad Cardiaca
6.
Curr Cardiol Rep ; 24(9): 1169-1177, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35796859

RESUMEN

PURPOSE OF REVIEW: A polygenic risk score (PRS) is a measure of genetic liability to a disease and is typically normally distributed in a population. Individuals in the upper tail of this distribution often have relative risk equivalent to that of monogenic form of the disease. The majority of currently available PRSs for coronary heart disease (CHD) have been generated from cohorts of European ancestry (EUR) and vary in their applicability to other ancestry groups. In this report, we review the performance of PRSs for CHD across different ancestries and efforts to reduce variability in performance including novel population and statistical genetics approaches. RECENT FINDINGS: PRSs for CHD perform robustly in EUR populations but lag in performance in non-EUR groups, particularly individuals of African ancestry. Several large consortia have been established to enable genomic studies in diverse ancestry groups and develop methods to improve PRS performance in multi-ancestry contexts as well as admixed individuals. These include fine-mapping to ascertain causal variants, trans ancestry meta-analyses, and ancestry deconvolution in admixed individuals. PRSs are being used in the clinical setting but enthusiasm has been tempered by the variable performance in non-EUR ancestry groups. Increasing diversity in genomic association studies and continued innovation in methodological approaches are needed to improve PRS performance in non-EUR individuals for equitable implementation of genomic medicine.


Asunto(s)
Enfermedad Coronaria , Estudio de Asociación del Genoma Completo , Enfermedad Coronaria/genética , Predisposición Genética a la Enfermedad , Humanos , Factores de Riesgo
7.
Curr Opin Lipidol ; 32(2): 89-95, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33538426

RESUMEN

PURPOSE OF REVIEW: Polygenic scores (PGS) are used to quantify the genetic predisposition for heritable traits, with hypothesized utility for personalized risk assessments. Lipid PGS are primed for clinical translation, but evidence-based practice changes will require rigorous PGS standards to ensure reproducibility and generalizability. Here we review applicable reporting and technical standards for dyslipidemia PGS translation along phases of the ACCE (Analytical validity, Clinical validity, Clinical utility, Ethical considerations) framework for evaluating genetic tests. RECENT FINDINGS: New guidance suggests existing standards for study designs incorporating the ACCE framework are applicable to PGS and should be adopted. One recent example is the Clinical Genomics Resource (ClinGen) and Polygenic Score Catalog's PRS reporting standards, which define minimal requirements for describing rationale for score development, study population definitions and data parameters, risk model development and application, risk model evaluation, and translational considerations, such as generalizability beyond the target population studied. SUMMARY: Lipid PGS are likely to be integrated into clinical practice in the future. Clinicians will need to be prepared to determine if and when lipid PGS is useful and valid. This decision-making will depend on the quality of evidence for the clinical use of PGS. Establishing reporting standards for PGS will help facilitate data sharing and transparency for critical evaluation, ultimately benefiting the efficiency of evidence-based practice.


Asunto(s)
Dislipidemias/genética , Práctica Clínica Basada en la Evidencia , Pruebas Genéticas , Herencia Multifactorial , Toma de Decisiones Clínicas , Humanos , Lípidos , Reproducibilidad de los Resultados , Medición de Riesgo
8.
Circulation ; 147(1): 32-34, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36576957
10.
Curr Atheroscler Rep ; 20(9): 47, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-30022313

RESUMEN

PURPOSE OF REVIEW: Genome-wide association studies (GWAS) have been the primary tool for unbiased assessment of the genetic basis of coronary artery disease (CAD) for more than a decade. We summarize successes as well as shortcomings of recent studies in this context. RECENT FINDINGS: The number of CAD-associated loci has more than doubled in the past year to 161. This rapid progress has been in large part due to the release of genome-wide genotyping data for the largely European participants of the UK Biobank study which has been combined with existing GWAS from the CARDIoGRAMplusC4D consortium. Additional discoveries have been achieved through large-scale genotyping of participants using custom high-yield genotyping arrays including the Metabochip and the Exome chip. As a consequence, the ability of genetic risk scores in predicting incident CAD events has improved but that improvement has only been shown in European populations. GWAS have proven to be a fruitful approach for uncovering the genetic drivers of CAD. However, determining the mechanisms of association of GWAS findings remains a challenging endeavor requiring long-term investment. Genetic risk scores offer an opportunity for recent findings to have an immediate clinical impact. Going forward, CAD genetics will benefit greatly from the release of more genetic data produced by mega-biobanks. These new data will allow for the more comprehensive examination of underrepresented populations.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos
11.
PLoS Comput Biol ; 12(2): e1004711, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26845687

RESUMEN

Although many human diseases have a genetic component involving many loci, the majority of studies are statistically underpowered to isolate the many contributing variants, raising the question of the existence of alternate processes to identify disease mutations. To address this question, we collect ancestral transcription factor binding sites disrupted by an individual's variants and then look for their most significant congregation next to a group of functionally related genes. Strikingly, when the method is applied to five different full human genomes, the top enriched function for each is invariably reflective of their very different medical histories. For example, our method implicates "abnormal cardiac output" for a patient with a longstanding family history of heart disease, "decreased circulating sodium level" for an individual with hypertension, and other biologically appealing links for medical histories spanning narcolepsy to axonal neuropathy. Our results suggest that erosion of gene regulation by mutation load significantly contributes to observed heritable phenotypes that manifest in the medical history. The test we developed exposes a hitherto hidden layer of personal variants that promise to shed new light on human disease penetrance, expressivity and the sensitivity with which we can detect them.


Asunto(s)
Sitios de Unión/genética , Genoma Humano/genética , Genómica/métodos , Modelos Genéticos , Cadenas beta de HLA-DQ/genética , Humanos , Desequilibrio de Ligamiento , Modelos Estadísticos , Mutación , Narcolepsia/genética , Medicina de Precisión
12.
Genome Res ; 23(5): 889-904, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23382538

RESUMEN

The human genome encodes 1500-2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells.


Asunto(s)
Sitios de Unión/genética , Biología Computacional , Programas Informáticos , Factores de Transcripción/genética , Algoritmos , Animales , Secuencia de Bases , Proteínas de Unión al ADN/genética , Genoma , Humanos , Ratones , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos
13.
PLoS Genet ; 9(8): e1003728, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24009522

RESUMEN

Genetic studies have identified a core set of transcription factors and target genes that control the development of the neocortex, the region of the human brain responsible for higher cognition. The specific regulatory interactions between these factors, many key upstream and downstream genes, and the enhancers that mediate all these interactions remain mostly uncharacterized. We perform p300 ChIP-seq to identify over 6,600 candidate enhancers active in the dorsal cerebral wall of embryonic day 14.5 (E14.5) mice. Over 95% of the peaks we measure are conserved to human. Eight of ten (80%) candidates tested using mouse transgenesis drive activity in restricted laminar patterns within the neocortex. GREAT based computational analysis reveals highly significant correlation with genes expressed at E14.5 in key areas for neocortex development, and allows the grouping of enhancers by known biological functions and pathways for further studies. We find that multiple genes are flanked by dozens of candidate enhancers each, including well-known key neocortical genes as well as suspected and novel genes. Nearly a quarter of our candidate enhancers are conserved well beyond mammals. Human and zebrafish regions orthologous to our candidate enhancers are shown to most often function in other aspects of central nervous system development. Finally, we find strong evidence that specific interspersed repeat families have contributed potentially key developmental enhancers via co-option. Our analysis expands the methodologies available for extracting the richness of information found in genome-wide functional maps.


Asunto(s)
Elementos de Facilitación Genéticos , Evolución Molecular , Neocórtex/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Secuencia de Bases , Secuencia Conservada/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Neocórtex/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
14.
Genome Res ; 22(6): 1059-68, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442009

RESUMEN

Enhancers are essential gene regulatory elements whose alteration can lead to morphological differences between species, developmental abnormalities, and human disease. Current strategies to identify enhancers focus primarily on noncoding sequences and tend to exclude protein coding sequences. Here, we analyzed 25 available ChIP-seq data sets that identify enhancers in an unbiased manner (H3K4me1, H3K27ac, and EP300) for peaks that overlap exons. We find that, on average, 7% of all ChIP-seq peaks overlap coding exons (after excluding for peaks that overlap with first exons). By using mouse and zebrafish enhancer assays, we demonstrate that several of these exonic enhancer (eExons) candidates can function as enhancers of their neighboring genes and that the exonic sequence is necessary for enhancer activity. Using ChIP, 3C, and DNA FISH, we further show that one of these exonic limb enhancers, Dync1i1 exon 15, has active enhancer marks and physically interacts with Dlx5/6 promoter regions 900 kb away. In addition, its removal by chromosomal abnormalities in humans could cause split hand and foot malformation 1 (SHFM1), a disorder associated with DLX5/6. These results demonstrate that DNA sequences can have a dual function, operating as coding exons in one tissue and enhancers of nearby gene(s) in another tissue, suggesting that phenotypes resulting from coding mutations could be caused not only by protein alteration but also by disrupting the regulation of another gene.


Asunto(s)
Elementos de Facilitación Genéticos , Exones , Regulación de la Expresión Génica , Animales , Inmunoprecipitación de Cromatina , Aberraciones Cromosómicas , Dineínas Citoplasmáticas/genética , Extremidades/embriología , Extremidades/fisiología , Femenino , Proteínas de Homeodominio/genética , Humanos , Hibridación Fluorescente in Situ , Deformidades Congénitas de las Extremidades/genética , Masculino , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Pez Cebra/genética
15.
PLoS Genet ; 8(8): e1002852, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22876195

RESUMEN

The identification of homologies, whether morphological, molecular, or genetic, is fundamental to our understanding of common biological principles. Homologies bridging the great divide between deuterostomes and protostomes have served as the basis for current models of animal evolution and development. It is now appreciated that these two clades share a common developmental toolkit consisting of conserved transcription factors and signaling pathways. These patterning genes sometimes show common expression patterns and genetic interactions, suggesting the existence of similar or even conserved regulatory apparatus. However, previous studies have found no regulatory sequence conserved between deuterostomes and protostomes. Here we describe the first such enhancers, which we call bilaterian conserved regulatory elements (Bicores). Bicores show conservation of sequence and gene synteny. Sequence conservation of Bicores reflects conserved patterns of transcription factor binding sites. We predict that Bicores act as response elements to signaling pathways, and we show that Bicores are developmental enhancers that drive expression of transcriptional repressors in the vertebrate central nervous system. Although the small number of identified Bicores suggests extensive rewiring of cis-regulation between the protostome and deuterostome clades, additional Bicores may be revealed as our understanding of cis-regulatory logic and sample of bilaterian genomes continue to grow.


Asunto(s)
Elementos de Facilitación Genéticos , Genoma , Invertebrados/genética , Factores de Transcripción/genética , Vertebrados/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Evolución Biológica , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Secuencia Conservada , Regulación del Desarrollo de la Expresión Génica , Humanos , Invertebrados/embriología , Invertebrados/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Alineación de Secuencia , Transducción de Señal , Sintenía , Factores de Transcripción/metabolismo , Vertebrados/embriología , Vertebrados/metabolismo
16.
Pac Symp Biocomput ; 29: 134-147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160275

RESUMEN

Recent research has effectively used quantitative traits from imaging to boost the capabilities of genome-wide association studies (GWAS), providing further understanding of disease biology and various traits. However, it's important to note that phenotyping inherently carries measurement error and noise that could influence subsequent genetic analyses. The study focused on left ventricular ejection fraction (LVEF), a vital yet potentially inaccurate quantitative measurement, to investigate how imprecision in phenotype measurement affects genetic studies. Several methods of acquiring LVEF, along with simulating measurement noise, were assessed for their effects on ensuing genetic analyses. The results showed that by introducing just 7.9% of measurement noise, all genetic associations in an LVEF GWAS with almost forty thousand individuals could be eliminated. Moreover, a 1% increase in mean absolute error (MAE) in LVEF had an effect equivalent to a 10% reduction in the sample size of the cohort on the power of GWAS. Therefore, enhancing the accuracy of phenotyping is crucial to maximize the effectiveness of genome-wide association studies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Función Ventricular Izquierda , Humanos , Volumen Sistólico/genética , Biología Computacional , Fenotipo
17.
Circ Genom Precis Med ; 17(3): e004272, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38380516

RESUMEN

BACKGROUND: Predictive performance of polygenic risk scores (PRS) varies across populations. To facilitate equitable clinical use, we developed PRS for coronary heart disease (CHD; PRSCHD) for 5 genetic ancestry groups. METHODS: We derived ancestry-specific and multi-ancestry PRSCHD based on pruning and thresholding (PRSPT) and ancestry-based continuous shrinkage priors (PRSCSx) applied to summary statistics from the largest multi-ancestry genome-wide association study meta-analysis for CHD to date, including 1.1 million participants from 5 major genetic ancestry groups. Following training and optimization in the Million Veteran Program, we evaluated the best-performing PRSCHD in 176,988 individuals across 9 diverse cohorts. RESULTS: Multi-ancestry PRSPT and PRSCSx outperformed ancestry-specific PRSPT and PRSCSx across a range of tuning values. Two best-performing multi-ancestry PRSCHD (ie, PRSPTmult and PRSCSxmult) and 1 ancestry-specific (PRSCSxEUR) were taken forward for validation. PRSPTmult demonstrated the strongest association with CHD in individuals of South Asian ancestry and European ancestry (odds ratio per 1 SD [95% CI, 2.75 [2.41-3.14], 1.65 [1.59-1.72]), followed by East Asian ancestry (1.56 [1.50-1.61]), Hispanic/Latino ancestry (1.38 [1.24-1.54]), and African ancestry (1.16 [1.11-1.21]). PRSCSxmult showed the strongest associations in South Asian ancestry (2.67 [2.38-3.00]) and European ancestry (1.65 [1.59-1.71]), lower in East Asian ancestry (1.59 [1.54-1.64]), Hispanic/Latino ancestry (1.51 [1.35-1.69]), and the lowest in African ancestry (1.20 [1.15-1.26]). CONCLUSIONS: The use of summary statistics from a large multi-ancestry genome-wide meta-analysis improved the performance of PRSCHD in most ancestry groups compared with single-ancestry methods. Despite the use of one of the largest and most diverse sets of training and validation cohorts to date, improvement of predictive performance was limited in African ancestry. This highlights the need for larger genome-wide association study datasets of underrepresented populations to enhance the performance of PRSCHD.


Asunto(s)
Enfermedad Coronaria , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Enfermedad Coronaria/genética , Masculino , Femenino , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Persona de Mediana Edad , Puntuación de Riesgo Genético
18.
medRxiv ; 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36824841

RESUMEN

Background: Recent studies have leveraged quantitative traits from imaging to amplify the power of genome-wide association studies (GWAS) to gain further insights into the biology of diseases and traits. However, measurement imprecision is intrinsic to phenotyping and can impact downstream genetic analyses. Methods: Left ventricular ejection fraction (LVEF), an important but imprecise quantitative imaging measurement, was examined to assess the impact of precision of phenotype measurement on genetic studies. Multiple approaches to obtain LVEF, as well as simulated measurement noise, were evaluated with their impact on downstream genetic analyses. Results: Even within the same population, small changes in the measurement of LVEF drastically impacted downstream genetic analyses. Introducing measurement noise as little as 7.9% can eliminate all significant genetic associations in an GWAS with almost forty thousand individuals. An increase of 1% in mean absolute error (MAE) in LVEF had an equivalent impact on GWAS power as a decrease of 10% in the cohort sample size, suggesting optimizing phenotyping precision is a cost-effective way to improve power of genetic studies. Conclusions: Improving the precision of phenotyping is important for maximizing the yield of genome-wide association studies.

19.
Med ; 4(4): 252-262.e3, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36996817

RESUMEN

BACKGROUND: Quantification of chamber size and systolic function is a fundamental component of cardiac imaging. However, the human heart is a complex structure with significant uncharacterized phenotypic variation beyond traditional metrics of size and function. Examining variation in cardiac shape can add to our ability to understand cardiovascular risk and pathophysiology. METHODS: We measured the left ventricle (LV) sphericity index (short axis length/long axis length) using deep learning-enabled image segmentation of cardiac magnetic resonance imaging data from the UK Biobank. Subjects with abnormal LV size or systolic function were excluded. The relationship between LV sphericity and cardiomyopathy was assessed using Cox analyses, genome-wide association studies, and two-sample Mendelian randomization. FINDINGS: In a cohort of 38,897 subjects, we show that a one standard deviation increase in sphericity index is associated with a 47% increased incidence of cardiomyopathy (hazard ratio [HR]: 1.47, 95% confidence interval [CI]: 1.10-1.98, p = 0.01) and a 20% increased incidence of atrial fibrillation (HR: 1.20, 95% CI: 1.11-1.28, p < 0.001), independent of clinical factors and traditional magnetic resonance imaging (MRI) measurements. We identify four loci associated with sphericity at genome-wide significance, and Mendelian randomization supports non-ischemic cardiomyopathy as causal for LV sphericity. CONCLUSIONS: Variation in LV sphericity in otherwise normal hearts predicts risk for cardiomyopathy and related outcomes and is caused by non-ischemic cardiomyopathy. FUNDING: This study was supported by grants K99-HL157421 (D.O.) and KL2TR003143 (S.L.C.) from the National Institutes of Health.


Asunto(s)
Cardiomiopatías , Aprendizaje Profundo , Humanos , Estudio de Asociación del Genoma Completo , Imagen por Resonancia Cinemagnética/métodos , Corazón , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/genética
20.
Int J Epidemiol ; 52(3): 806-816, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36409989

RESUMEN

BACKGROUND: A later age at natural menopause (ANM) has been linked to several ageing-associated traits including an increased risk of breast and endometrial cancer and a decreased risk of lung cancer, osteoporosis and Alzheimer disease. However, ANM is also related to several proxies for overall health that may confound these associations. METHODS: We investigated the causal association of ANM with these clinical outcomes using Mendelian randomization (MR). Participants and outcomes analysed were restricted to post-menopausal females. We conducted a one-sample MR analysis in both the Women's Health Initiative and UK Biobank. We further analysed and integrated several additional data sets of post-menopausal women using a two-sample MR design. We used ≤55 genetic variants previously discovered to be associated with ANM as our instrumental variable. RESULTS: A 5-year increase in ANM was causally associated with a decreased risk of osteoporosis [odds ratio (OR) = 0.80, 95% CI (0.70-0.92)] and fractures (OR = 0.76, 95% CI, 0.62-0.94) as well as an increased risk of lung cancer (OR = 1.35, 95% CI, 1.06-1.71). Other associations including atherosclerosis-related outcomes were null. CONCLUSIONS: Our study confirms that the decline in bone density with menopause causally translates into fractures and osteoporosis. Additionally, this is the first causal epidemiological analysis to our knowledge to find an increased risk of lung cancer with increasing ANM. This finding is consistent with molecular and epidemiological studies suggesting oestrogen-dependent growth of lung tumours.


Asunto(s)
Fracturas Óseas , Osteoporosis , Femenino , Humanos , Factores de Edad , Envejecimiento/genética , Menopausia , Fracturas Óseas/epidemiología , Fracturas Óseas/genética , Osteoporosis/epidemiología , Osteoporosis/genética , Evaluación de Resultado en la Atención de Salud , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA