Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(11): 105306, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778733

RESUMEN

The mitochondrial amidoxime-reducing component (mARC) is one of five known molybdenum enzymes in eukaryotes. mARC belongs to the MOSC domain superfamily, a large group of so far poorly studied molybdoenzymes. mARC was initially discovered as the enzyme activating N-hydroxylated prodrugs of basic amidines but has since been shown to also reduce a variety of other N-oxygenated compounds, for example, toxic nucleobase analogs. Under certain circumstances, mARC might also be involved in reductive nitric oxide synthesis through reduction of nitrite. Recently, mARC enzymes have received a lot of attention due to their apparent involvement in lipid metabolism and, in particular, because many genome-wide association studies have shown a common variant of human mARC1 to have a protective effect against liver disease. The mechanism linking mARC enzymes with lipid metabolism remains unknown. Here, we give a comprehensive overview of what is currently known about mARC enzymes, their substrates, structure, and apparent involvement in human disease.


Asunto(s)
Oxidorreductasas , Profármacos , Humanos , Estudio de Asociación del Genoma Completo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Profármacos/farmacología , Animales
2.
Anal Chem ; 95(33): 12452-12458, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37549068

RESUMEN

The mitochondrial amidoxime-reducing component (mARC) is one of the simplest molybdenum-containing enzymes. mARC is among a few known reducing enzymes playing an important role in drug metabolism in mammals. Here, an assay based on the fluorescence of NADH is reported for the rapid detection of substrates and potential inhibitors of mARC. So far unknown inhibitors might be useful for the development of drugs assigned to nonalcoholic fatty liver disease (NAFLD) and similar diseases. Kinetics of reactions catalyzed by mARC can be recorded with high sensitivity and precision. On a microtiter plate scale, the assay presented could be applied for high-throughput screening of substance libraries and detection of novel mARC substrate candidates. For instance, molnupiravir was also identified as a new substrate by this assay. For better comparison for such substances, the inhibitor or substrate-to-BAO ratio was introduced. After normalization of enzyme activities to the standard benzamidoxime, substrates can reproducibly be classified.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Fluorescencia
3.
Inorg Chem ; 62(14): 5315-5319, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36971376

RESUMEN

X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data have been used to characterize the coordination environment for the catalytic Mo site of Escherichia coli YcbX in two different oxidation states. In the oxidized state, the Mo(VI) ion is coordinated by two terminal oxo ligands, a thiolate S atom from cysteine, and two S donors from the bidentate pyranopterin ene-1,2-dithiolate (pyranopterin dithiolene). Upon reduction, it is the more basic equatorial oxo ligand that is protonated, with a Mo-Oeq bond distance that is best described as either a short Mo4+-OH2 bond or a long Mo4+-OH bond. Mechanistic implications for substrate reduction are discussed in light of these structural details.


Asunto(s)
Escherichia coli , Molibdeno , Dominio Catalítico , Oxidación-Reducción , Molibdeno/química
4.
Molecules ; 28(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37375270

RESUMEN

The mitochondrial amidoxime-reducing component (mARC) is the most recently discovered molybdoenzyme in humans after sulfite oxidase, xanthine oxidase and aldehyde oxidase. Here, the timeline of mARC's discovery is briefly described. The story begins with investigations into N-oxidation of pharmaceutical drugs and model compounds. Many compounds are N-oxidized extensively in vitro, but it turned out that a previously unknown enzyme catalyzes the retroreduction of the N-oxygenated products in vivo. After many years, the molybdoenzyme mARC could finally be isolated and identified in 2006. mARC is an important drug-metabolizing enzyme and N-reduction by mARC has been exploited very successfully for prodrug strategies, that allow oral administration of otherwise poorly bioavailable therapeutic drugs. Recently, it was demonstrated that mARC is a key factor in lipid metabolism and likely involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). The exact link between mARC and lipid metabolism is not yet fully understood. Regardless, many now consider mARC a potential drug target for the prevention or treatment of liver diseases. This article focusses on discoveries related to mammalian mARC enzymes. mARC homologues have been studied in algae, plants and bacteria. These will not be discussed extensively here.


Asunto(s)
Oxidorreductasas , Sulfito-Oxidasa , Animales , Humanos , Oxidorreductasas/metabolismo , Oxidación-Reducción , Sulfito-Oxidasa/metabolismo , Oximas , Mamíferos/metabolismo , Molibdeno/metabolismo
5.
Molecules ; 28(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687214

RESUMEN

The mitochondrial amidoxime reducing component (mARC) is a human molybdoenzyme known to catalyze the reduction of various N-oxygenated substrates. The physiological function of mARC enzymes, however, remains unknown. In this study, we examine the reduction of hydrogen peroxide (H2O2) by the human mARC1 and mARC2 enzymes. Furthermore, we demonstrate an increased sensitivity toward H2O2 for HEK-293T cells with an MTARC1 knockout, which implies a role of mARC enzymes in the cellular response to oxidative stress. H2O2 is a reactive oxygen species (ROS) formed in all living cells involved in many physiological processes. Furthermore, H2O2 constitutes the first mARC substrate without a nitrogen-oxygen bond, implying that mARC enzymes may have a substrate spectrum going beyond the previously examined N-oxygenated compounds.


Asunto(s)
Peróxido de Hidrógeno , Oximas , Humanos , Oximas/farmacología , Mitocondrias , Catálisis
6.
J Biol Chem ; 296: 100672, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33887324

RESUMEN

MtsZ is a molybdenum-containing methionine sulfoxide reductase that supports virulence in the human respiratory pathogen Haemophilus influenzae (Hi). HiMtsZ belongs to a group of structurally and spectroscopically uncharacterized S-/N-oxide reductases, all of which are found in bacterial pathogens. Here, we have solved the crystal structure of HiMtsZ, which reveals that the HiMtsZ substrate-binding site encompasses a previously unrecognized part that accommodates the methionine sulfoxide side chain via interaction with His182 and Arg166. Charge and amino acid composition of this side chain-binding region vary and, as indicated by electrochemical, kinetic, and docking studies, could explain the diverse substrate specificity seen in closely related enzymes of this type. The HiMtsZ Mo active site has an underlying structural flexibility, where dissociation of the central Ser187 ligand affected catalysis at low pH. Unexpectedly, the two main HiMtsZ electron paramagnetic resonance (EPR) species resembled not only a related dimethyl sulfoxide reductase but also a structurally unrelated nitrate reductase that possesses an Asp-Mo ligand. This suggests that contrary to current views, the geometry of the Mo center and its primary ligands, rather than the specific amino acid environment, is the main determinant of the EPR properties of mononuclear Mo enzymes. The flexibility in the electronic structure of the Mo centers is also apparent in two of three HiMtsZ EPR-active Mo(V) species being catalytically incompetent off-pathway forms that could not be fully oxidized.


Asunto(s)
Proteínas Bacterianas/química , Haemophilus influenzae/enzimología , Metaloproteínas/química , Molibdeno/metabolismo , Oxidorreductasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Cinética , Ligandos , Metaloproteínas/metabolismo , Molibdeno/química , Oxidación-Reducción , Oxidorreductasas/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
7.
Anal Chem ; 94(25): 9208-9215, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35700342

RESUMEN

Human mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) were immobilised on glassy carbon electrodes using the crosslinker glutaraldehyde. Voltammetry was performed in the presence of the artificial electron transfer mediator methyl viologen, whose redox potential lies negative of the enzymes' MoVI/V and MoV/IV redox potentials which were determined from optical spectroelectrochemical and EPR measurements. Apparent Michaelis constants obtained from catalytic limiting currents at various substrate concentrations were comparable to those previously reported in the literature from enzymatic assays. Kinetic parameters for benzamidoxime reduction were determined from cyclic voltammograms simulated using Digisim. pH dependence and stability of the enzyme electrode with time were also determined from limiting catalytic currents in saturating concentrations of benzamidoxime. The same electrode remained active after at least 9 days. Fabrication of this versatile and cost-effective biosensor is effective in screening new pharmaceutically important substrates and mARC inhibitors.


Asunto(s)
Técnicas Biosensibles , Profármacos , Electrodos , Transporte de Electrón , Humanos , Oxidación-Reducción , Oximas
8.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36142413

RESUMEN

Although ovarian cancer is a rare disease, it constitutes the fifth leading cause of cancer death among women. It is of major importance to develop new therapeutic strategies to improve survival. Combining P8-D6, a novel dual topoisomerase inhibitor with exceptional anti-tumoral properties in ovarian cancer and compounds in preclinical research, and olaparib, a PARP inhibitor targeting DNA damage repair, is a promising approach. P8-D6 induces DNA damage that can be repaired by base excision repair or homologous recombination in which PARP plays a major role. This study analyzed benefits of combining P8-D6 and olaparib treatment in 2D and 3D cultures with ovarian cancer cells. Measurement of viability, cytotoxicity and caspase activity were used to assess therapy efficacy and to calculate the combination index (CI). Further DNA damage was quantified using the biomarkers RAD51 and γH2A.X. The combinational treatment led to an increased caspase activity and reduced viability. CI values partially show synergisms in combinations at 100 nM and 500 nM P8-D6. More DNA damage accumulated, and spheroids lost their membrane integrity due to the combinational treatment. While maintaining the same therapy efficacy as single-drug therapy, doses of P8-D6 and olaparib can be reduced in combinational treatments. Synergisms can be seen in some tested combinations. In summary, the combination therapy indicates benefits and acts synergistic at 100 nM and 500 nM P8-D6.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Caspasas/genética , Muerte Celular , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Inestabilidad Genómica , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Topoisomerasa
9.
Proc Natl Acad Sci U S A ; 115(47): 11958-11963, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397129

RESUMEN

Biotransformation enzymes ensure a viable homeostasis by regulating reversible cycles of oxidative and reductive reactions. The metabolism of nitrogen-containing compounds is of high pharmaceutical and toxicological relevance because N-oxygenated metabolites derived from reactions mediated by cytochrome P450 enzymes or flavin-dependent monooxygenases are in some cases highly toxic or mutagenic. The molybdenum-dependent mitochondrial amidoxime-reducing component (mARC) was found to be an extremely efficient counterpart, which is able to reduce the full range of N-oxygenated compounds and thereby mediates detoxification reactions. However, the 3D structure of this enzyme was unknown. Here we present the high-resolution crystal structure of human mARC. We give detailed insight into the coordination of its molybdenum cofactor (Moco), the catalytic mechanism, and its ability to reduce a wide range of N-oxygenated compounds. The identification of two key residues will allow future discrimination between mARC paralogs and ensure correct annotation. Since our structural findings contradict in silico predictions that are currently made by online databases, we propose domain definitions for members of the superfamily of Moco sulfurase C-terminal (MOSC) domain-containing proteins. Furthermore, we present evidence for an evolutionary role of mARC for the emergence of the xanthine oxidase protein superfamily. We anticipate the hereby presented crystal structure to be a starting point for future descriptions of MOSC proteins, which are currently poorly structurally characterized.


Asunto(s)
Proteínas Mitocondriales/química , Proteínas Mitocondriales/ultraestructura , Oxidorreductasas/química , Oxidorreductasas/ultraestructura , Catálisis , Coenzimas , Cristalografía por Rayos X/métodos , Células Eucariotas/metabolismo , Humanos , Metaloproteínas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Molibdeno/metabolismo , Cofactores de Molibdeno , Oxidación-Reducción , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína , Pteridinas
10.
J Biol Chem ; 294(46): 17593-17602, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31554661

RESUMEN

The mitochondrial amidoxime-reducing component (MARC) is a mammalian molybdenum-containing enzyme. All annotated mammalian genomes harbor two MARC genes, MARC1 and MARC2, which share a high degree of sequence similarity. Both molybdoenzymes reduce a variety of N-hydroxylated compounds. Besides their role in N-reductive drug metabolism, only little is known about their physiological functions. In this study, we characterized an existing KO mouse model lacking the functional MARC2 gene and fed a high-fat diet and also performed in vivo and in vitro experiments to characterize reductase activity toward known MARC substrates. MARC2 KO significantly decreased reductase activity toward several N-oxygenated substrates, and for typical MARC substrates, only small residual reductive activity was still detectable in MARC2 KO mice. The residual detected reductase activity in MARC2 KO mice could be explained by MARC1 expression that was hardly unaffected by KO, and we found no evidence of significant activity of other reductase enzymes. These results clearly indicate that MARC2 is mainly responsible for N-reductive biotransformation in mice. Striking phenotypical features of MARC2 KO mice were lower body weight, increased body temperature, decreased levels of total cholesterol, and increased glucose levels, supporting previous findings that MARC2 affects energy pathways. Of note, the MARC2 KO mice were resistant to high-fat diet-induced obesity. We propose that the MARC2 KO mouse model could be a powerful tool for predicting MARC-mediated drug metabolism and further investigating MARC's roles in energy homeostasis.


Asunto(s)
Metabolismo Energético , Proteínas Mitocondriales/metabolismo , Obesidad/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Obesidad/etiología , Obesidad/genética , Oxidación-Reducción
11.
Molecules ; 25(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230817

RESUMEN

The benzo[c]phenanthridine P8-D6 was recently found to suppress the catalytic activity of both human topoisomerase (Topo) I and II. Concomitantly, potent cytotoxic activity was observed in different human tumor cell lines, raising questions about the underlying mechanisms in vitro. In the present study, we addressed the question of whether P8-D6 acts as a so-called Topo poison, stabilizing the covalent Topo-DNA intermediate, thus inducing fatal DNA strand breaks in proliferating cells. In HT-29 colon carcinoma cells, fluorescence imaging revealed P8-D6 to be taken up by the cells and to accumulate in the perinuclear region. Confocal microscopy demonstrated that the compound is partially located inside the nuclei, thus reaching the potential target. In the "in vivo complex of enzyme" (ICE) bioassay, treatment of HT-29 cells with P8-D6 for 1 h significantly enhanced the proportion of Topo I and II covalently linked to the DNA in concentrations ≥1 µM, indicating effective dual Topo poisoning. Potentially resulting DNA damage was analyzed by single-cell gel electrophoresis ("comet assay"). Already at 1 h of incubation, significant genotoxic effects were observed in the comet assay in concentrations as low as 1 nM. Taken together, the present study demonstrates the high Topo-poisoning and genotoxic potential of P8-D6 in human tumor cells.


Asunto(s)
Benzofenantridinas/envenenamiento , Núcleo Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Benzofenantridinas/química , Benzofenantridinas/farmacología , Núcleo Celular/metabolismo , Células HT29 , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Análisis de la Célula Individual , Inhibidores de Topoisomerasa/farmacología
12.
Drug Metab Dispos ; 46(10): 1396-1402, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30045842

RESUMEN

The mitochondrial amidoxime reducing component is a recently discovered molybdenum enzyme in mammals which, in concert with the electron transport proteins cytochrome b5 and NADH cytochrome b5 reductase, catalyzes the reduction of N-oxygenated structures. This three component enzyme system plays a major role in N-reductive drug metabolism. Belonging to the group of N-hydroxylated structures, hydroxamic acids are also potential substrates of the mARC-system. Hydroxamic acids show a variety of pharmacological activities and are therefore often found in drug candidates. They can also exhibit toxic properties as is the case for many aryl hydroxamic acids formed during the metabolism of arylamides. Biotransformation assays using recombinant human proteins, subcellular porcine tissue fractions as well as human cell culture were performed. Here the mARC-dependent reduction of the model compound benzhydroxamic acid is reported in addition to the reduction of three drugs. In comparison with other known substrates of the molybdenum depending enzyme system (e.g., amidoxime prodrugs) the conversion rates measured here are slower, thereby reflecting the mediocre metabolic stability and oral bioavailability of distinct hydroxamic acids. Moreover, the toxic N-hydroxylated metabolite of the analgesic phenacetin, N-hydroxyphenacetin, is not reduced by the mARC-system under the chosen conditions. This confirms the high toxicity of this component, as it needs to be detoxified by other pathways. This work highlights the need to monitor the N-reductive metabolism of new drug candidates by the mARC-system when evaluating the metabolic stability of hydroxamic acid-containing structures or the potential risks of toxic metabolites.


Asunto(s)
Ácidos Hidroxámicos/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Animales , Biotransformación , Citocromo-B(5) Reductasa/metabolismo , Citocromos b5/metabolismo , Humanos , Oxidación-Reducción , Receptor EphB3 , Porcinos
13.
Chem Res Toxicol ; 31(6): 447-453, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29856598

RESUMEN

Although known for years, the toxic effects of trimethylamine N-oxide (TMAO), a physiological metabolite, were just recently discovered and are currently under investigation. It is known that elevated TMAO plasma levels correlate with an elevated risk for cardiovascular disease (CVD). Even though there is a general consensus about the existence of a causal relationship between TMAO and CVD, the underlying mechanisms are not fully understood. TMAO is an oxidation product of the hepatic flavin-containing monooxygenases (FMO), mainly of isoform 3, and it is conceivable that humans also have an enzyme reversing this toxification by reducing TMAO to its precursor trimethylamine (TMA). All prokaryotic enzymes that use TMAO as a substrate have molybdenum-containing cofactors in common. Such molybdenum-containing enzymes also exist in mammals, with the so-called mitochondrial amidoxime reducing component (mARC) representing the most recently discovered mammalian molybdenum enzyme. The enzyme has been found to exist in two isoforms, mARC1 and mARC2, both being capable of reducing a variety of N-oxygenated compounds, including nonphysiological N-oxides. To investigate whether the two isoforms of this enzyme are able to reduce and detoxify TMAO, we developed a suitable analytical method and tested TMAO reduction with a recombinant enzyme system. We found that one of the two recombinant human mARC proteins, namely, hmARC1, reduces TMAO to TMA. The N-reductive activity is relatively low and identified via the kinetic parameters with Km = (30.4 ± 9.8) mM and Vmax = (100.5 ± 12.2) nmol/(mg protein·min). Nevertheless, the ubiquitous tissue expression of hmARC1 allows a continuous reduction of TMAO whereas the counter-reaction, the production of TMAO through FMO3, can take place only in the liver where FMO3 is expressed. TMAO reduction in porcine liver subfractions showed the characteristic enrichment of N-reductive activity in the outer mitochondrial membrane. TMAO reduction was also found in human cell cultures. These findings indicate the role of hmARC1 in the metabolomic pathway of TMAO, which might contribute to the prevention of CVD. This also hints at a physiological function of the molybdenum enzyme, which remains mainly unknown to date.


Asunto(s)
Metilaminas/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Animales , Línea Celular Tumoral , Humanos , Inactivación Metabólica , Hígado/metabolismo , Metilaminas/química , Mitocondrias/metabolismo , Oxidación-Reducción , Porcinos
14.
J Biol Chem ; 290(16): 10126-35, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25713076

RESUMEN

N-Hydroxylated nucleobases and nucleosides as N-hydroxylaminopurine (HAP) or N-hydroxyadenosine (HAPR) may be generated endogenously in the course of cell metabolism by cytochrome P450, by oxidative stress or by a deviating nucleotide biosynthesis. These compounds have shown to be toxic and mutagenic for procaryotic and eucaryotic cells. For DNA replication fidelity it is therefore of great importance that organisms exhibit effective mechanisms to remove such non-canonical base analogs from DNA precursor pools. In vitro, the molybdoenzymes mitochondrial amidoxime reducing component 1 and 2 (mARC1 and mARC2) have shown to be capable of reducing N-hydroxylated base analogs and nucleoside analogs to the corresponding canonical nucleobases and nucleosides upon reconstitution with the electron transport proteins cytochrome b5 and NADH-cytochrome b5 reductase. By RNAi-mediated down-regulation of mARC in human cell lines the mARC-dependent N-reductive detoxication of HAP in cell metabolism could be demonstrated. For HAPR, on the other hand, the reduction to adenosine seems to be of less significance in the detoxication pathway of human cells as HAPR is primarily metabolized to inosine by direct dehydroxylamination catalyzed by adenosine deaminase. Furthermore, the effect of mARC knockdown on sensitivity of human cells to HAP was examined by flow cytometric quantification of apoptotic cell death and detection of poly (ADP-ribose) polymerase (PARP) cleavage. mARC2 was shown to protect HeLa cells against the apoptotic effects of the base analog, whereas the involvement of mARC1 in reductive detoxication of HAP does not seem to be pivotal.


Asunto(s)
Adenina/análogos & derivados , Adenosina/análogos & derivados , Proteínas de la Membrana/metabolismo , Fase I de la Desintoxicación Metabólica , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Adenina/metabolismo , Adenosina/metabolismo , Apoptosis/genética , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Citocromos b5/genética , Citocromos b5/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/genética , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteolisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
15.
Drug Metab Dispos ; 44(10): 1617-21, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27469001

RESUMEN

The importance of the mitochondrial amidoxime reducing component (mARC)-containing enzyme system in N-reductive metabolism has been studied extensively. It catalyzes the reduction of various N-hydroxylated compounds and therefore acts as the counterpart of cytochrome P450- and flavin-containing monooxygenase-catalyzed oxidations at nitrogen centers. This enzyme system was found to be responsible for the activation of amidoxime and N-hydroxyguanidine prodrugs in drug metabolism. The synergy of three components (mARC, cytochrome b5, and the appropriate reductase) is crucial to exert the N-reductive catalytic effect. Previous studies have demonstrated the involvement of the specific isoforms of the molybdoenzyme mARC and the electron transport protein cytochrome b5 in N-reductive metabolism. To date, the corresponding reductase involved in N-reductive metabolism has yet to be defined because previous investigations have presented ambiguous results. Using small interfering RNA-mediated knockdown in human cells and assessing the stoichiometry of the enzyme system reconstituted in vitro, we provide evidence that NADH-cytochrome-b5 reductase 3 is the principal reductase involved in the mARC enzyme system and is an essential component of N-reductive metabolism in human cells. In addition, only minimal levels of cytochrome-b5 reductase 3 protein are sufficient for catalysis, which impeded previous attempts to identify the reductase.


Asunto(s)
Citocromo-B(5) Reductasa/metabolismo , Mitocondrias/enzimología , NAD/metabolismo , Oximas/metabolismo , Células HEK293 , Humanos
16.
Chemistry ; 22(24): 8301-8, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27151929

RESUMEN

A versatile one-step two-component cyclization to build new tetracyclic nitrogen heterocycles is described. Ortho-methylhetarenecarbonitrile components were condensed with aldehydes to access a large library of differently substituted ring systems. The heterocyclic core can be easily modified by variation of the position of the endocyclic nitrogen atom in the o-methylhetarenecarbonitrile substrate. The manner of the nucleophilic attack that leads to the condensation can be triggered by different electron-density distribution in the molecule induced by the position of the nitrogen atom. Taking this into account, there is an electronic preference that leads to either pyridophenanthrolines or the corresponding pyridoazacarbazoles as the main products. We demonstrate the high antitumor potential of some of our synthesized heterocycles, which is strongly dependent on the substitution pattern introduced through the aldehyde component. The position and number of endocyclic nitrogen atoms play an important role regarding cytotoxicity of the studied compounds.


Asunto(s)
Antineoplásicos/síntesis química , Compuestos Heterocíclicos/química , Fenantridinas/química , Antineoplásicos/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Nitrógeno/química , Fenantridinas/síntesis química , Fenantridinas/toxicidad , Relación Estructura-Actividad
17.
Anal Biochem ; 493: 14-20, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26464121

RESUMEN

The L-arginine metabolites methylated at the guanidino moiety, such as N(G)-monomethyl-L-arginine (LNMMA), asymmetric N(G),N(G)-dimethyl-L-arginine (ADMA), and symmetric N(G),N(G')-dimethyl-L-arginine (SDMA), are long known to be present in human plasma. Far less is known about the structural isomer of LNMMA, N(δ)-monomethyl-L-arginine (δ-MMA). In prior work, it has been detected in yeast proteins, but it has not been investigated in mammalian plasma or cells. In this work, we present a method for the simultaneous and unambiguous quantification of LNMMA and δ-MMA in human plasma that is capable of detecting δ-MMA separately from LNMMA. The method comprises a simple protein precipitation sample preparation, hydrophilic interaction liquid chromatography (HILIC) gradient elution on an unmodified silica column, and triple stage mass spectrometric detection. Stable isotope-labeled D6-SDMA was used as internal standard. The calibration ranges were 25-1000 nmol/L for LNMMA and 5-350 nmol/L for δ-MMA. The intra- and inter-batch precision determinations resulted in relative standard deviations of less than 12% for both compounds with accuracies of less than 6% deviation from the expected values. In a pilot study enrolling 10 healthy volunteers, mean concentrations of 48.0 ± 7.4 nmol/L for LNMMA and 27.4 ± 7.7 nmol/L for δ-MMA were found.


Asunto(s)
omega-N-Metilarginina/sangre , Adulto , Cromatografía Líquida de Alta Presión/métodos , Humanos , Isomerismo , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad , Proyectos Piloto , Reproducibilidad de los Resultados , Adulto Joven , omega-N-Metilarginina/análisis
18.
J Biol Inorg Chem ; 20(2): 265-75, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25425164

RESUMEN

The "mitochondrial amidoxime reducing component" (mARC) is the most recently discovered molybdenum-containing enzyme in mammals. All mammalian genomes studied to date contain two mARC genes: MARC1 and MARC2. The proteins encoded by these genes are mARC-1 and mARC-2 and represent the simplest form of eukaryotic molybdenum enzymes, only binding the molybdenum cofactor. In the presence of NADH, mARC proteins exert N-reductive activity together with the two electron transport proteins cytochrome b5 type B and NADH cytochrome b5 reductase. This enzyme system is capable of reducing a great variety of N-hydroxylated substrates. It plays a decisive role in the activation of prodrugs containing an amidoxime structure, and in detoxification pathways, e.g., of N-hydroxylated purine and pyrimidine bases. It belongs to a group of drug metabolism enzymes, in particular as a counterpart of P450 formed N-oxygenated metabolites. Its physiological relevance, on the other hand, is largely unknown. The aim of this article is to summarize our current knowledge of these proteins with a special focus on the mammalian enzymes and their N-reductive activity.


Asunto(s)
Coenzimas/química , Proteínas de la Membrana/química , Metaloproteínas/química , Proteínas Mitocondriales/química , Molibdeno/química , Oxidorreductasas/química , Pteridinas/química , Animales , Citocromos b5/química , Citocromos b5/metabolismo , Transporte de Electrón , Humanos , Mamíferos , Proteínas de la Membrana/metabolismo , Fase I de la Desintoxicación Metabólica , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Molibdeno/metabolismo , Cofactores de Molibdeno , NAD/química , Oxidorreductasas/metabolismo
19.
Chemistry ; 21(18): 6668-72, 2015 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-25825166

RESUMEN

We herein describe a facile and versatile synthetic route to the tetracyclic system of 6-substituted 5,6-dihydro-11H-pyrido[3,2-i]-1-azacarbazoles with promising anticancer properties. These derivatives are built up by an elegant one-step base-catalyzed synthetic procedure from commercially available building blocks. One additional step provides the corresponding skeleton hitherto unknown in the literature. The possibility to synthesize a large library of compounds with various substitution patterns utilizing this method underlines the importance of this synthetic procedure.


Asunto(s)
Antineoplásicos/síntesis química , Carbazoles/síntesis química , Piridinas/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Carbazoles/química , Carbazoles/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ciclización , Humanos , Estructura Molecular , Piridinas/química , Piridinas/farmacología
20.
Amino Acids ; 47(12): 2561-71, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26189025

RESUMEN

Arginine methyltransferases (RMTs) catalyze the methylation of arginine residues on proteins. We examined the effects of log-phase growth, stationary-phase growth, and heat shock on the formation of methylarginines on yeast proteins to determine if the conditions favor a particular type of methylation. Utilizing linear ion trap mass spectrometry, we identify methylarginines in wild-type and RMT deletion yeast strains using secondary product ion scans (MS(3)), and quantify the methylarginines using multiple reaction monitoring (MRM). Employing MS(3) and isotopic incorporation, we demonstrate for the first time that Nη1, Nη2-dimethylarginine (sDMA) is present on yeast proteins, and make a detailed structural determination of the fragment ions from the spectra. Nη-monomethylarginine (ηMMA), Nδ-monomethylarginine (δMMA), Nη1, Nη1-dimethylarginine (aDMA), and sDMA were detected in RMT deletion yeast using MS(3) and MRM with and without isotopic incorporation, suggesting that additional RMT enzymes remain to be discovered in yeast. The concentrations of ηMMA and δMMA decreased by half during heat shock and stationary phase compared to log-phase growth of wild-type yeast, whereas sDMA increased by as much as sevenfold and aDMA decreased by 11-fold. Therefore, upon entering stressful conditions like heat shock or stationary-phase growth, there is a net increase in sDMA and decreases in aDMA, ηMMA, and δMMA on yeast proteins.


Asunto(s)
Arginina/química , Respuesta al Choque Térmico , Proteína-Arginina N-Metiltransferasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Arginina/análogos & derivados , Eliminación de Gen , Calor , Espectrometría de Masas , Metilación , omega-N-Metilarginina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA