Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 147(5): 1671-1682, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33069714

RESUMEN

BACKGROUND: Epidemiological data show that traffic-related air pollution contributes to the increasing prevalence and severity of asthma. DNA methylation (DNAm) changes may elucidate adverse health effects of environmental exposures. OBJECTIVES: We sought to assess the effects of allergen and diesel exhaust (DE) exposures on global DNAm and its regulation enzymes in human airway epithelium. METHODS: A total of 11 participants, including 7 with and 4 without airway hyperresponsiveness, were recruited for a randomized, double-blind crossover study. Each participant had 3 exposures: filtered air + saline, filtered air + allergen, and DE + allergen. Forty-eight hours postexposure, endobronchial biopsies and bronchoalveolar lavages were collected. Levels of DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, 5-methylcytosine, and 5-hydroxymethylcytosine were determined by immunohistochemistry. Cytokines and chemokines in bronchoalveolar lavages were measured by electrochemiluminescence multiplex assays. RESULTS: Predominant DNMT (the most abundant among DNMT1, DNMT3A, and DNMT3B) and predominant TET (the most abundant among TET1, TET2, and TET3) were participant-dependent. 5-Methylcytosine and its regulation enzymes differed between participants with and without airway hyperresponsiveness at baseline (filtered air + saline) and in response to allergen challenge (regardless of DE exposure). Predominant DNMT and predominant TET correlated with lung function. Allergen challenge effect on IL-8 in bronchoalveolar lavages was modified by TET2 baseline levels in the epithelium. CONCLUSIONS: Response to allergen challenge is associated with key DNAm regulation enzymes. This relationship is generally unaltered by DE coexposure but is rather dependent on airway hyperresponsiveness status. These enzymes therefore warranted further inquiry regarding their potential in diagnosis, prognosis, and treatment of asthma.


Asunto(s)
Contaminación del Aire , Alérgenos/administración & dosificación , Metilasas de Modificación del ADN/metabolismo , Exposición por Inhalación , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Hipersensibilidad Respiratoria/metabolismo , Mucosa Respiratoria/metabolismo , Emisiones de Vehículos , Adulto , Bronquios , Líquido del Lavado Bronquioalveolar/química , Línea Celular , Estudios Cruzados , Citocinas/metabolismo , Metilasas de Modificación del ADN/genética , Método Doble Ciego , Femenino , Humanos , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética , Hipersensibilidad Respiratoria/fisiopatología , Adulto Joven
3.
J Allergy Clin Immunol ; 139(1): 112-121, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27321436

RESUMEN

BACKGROUND: Allergic disease affects 30% to 40% of the world's population, and its development is determined by the interplay between environmental and inherited factors. Air pollution, primarily consisting of diesel exhaust emissions, has increased at a similar rate to allergic disease. Exposure to diesel exhaust may play a role in the development and progression of allergic disease, in particular allergic respiratory disease. One potential mechanism underlying the connection between air pollution and increased allergic disease incidence is DNA methylation, an epigenetic process with the capacity to integrate gene-environment interactions. OBJECTIVE: We sought to investigate the effect of allergen and diesel exhaust exposure on bronchial epithelial DNA methylation. METHODS: We performed a randomized crossover-controlled exposure study to allergen and diesel exhaust in humans, and measured single-site (CpG) resolution global DNA methylation in bronchial epithelial cells. RESULTS: Exposure to allergen alone, diesel exhaust alone, or allergen and diesel exhaust together (coexposure) led to significant changes in 7 CpG sites at 48 hours. However, when the same lung was exposed to allergen and diesel exhaust but separated by approximately 4 weeks, significant changes in more than 500 sites were observed. Furthermore, sites of differential methylation differed depending on which exposure was experienced first. Functional analysis of differentially methylated CpG sites found genes involved in transcription factor activity, protein metabolism, cell adhesion, and vascular development, among others. CONCLUSIONS: These findings suggest that specific exposures can prime the lung for changes in DNA methylation induced by a subsequent insult.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Alérgenos/toxicidad , Bronquios/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Adulto , Antígenos Dermatofagoides/toxicidad , Asma/genética , Asma/metabolismo , Betula/inmunología , Bronquios/metabolismo , Islas de CpG , Femenino , Humanos , Exposición por Inhalación/efectos adversos , Masculino , Persona de Mediana Edad , Phleum/inmunología , Proteínas de Plantas/toxicidad , Mucosa Respiratoria/metabolismo , Adulto Joven
5.
Biochem Biophys Res Commun ; 476(4): 431-437, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27240956

RESUMEN

Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)ß, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPß binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1ß increased NF-κB, C/EBPß and Brd4 binding. Furthermore, inhibitors of bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway.


Asunto(s)
Fibrosis Quística/genética , Epigénesis Genética , Interleucina-8/genética , Azepinas/farmacología , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Fibrosis Quística/patología , Metilación de ADN , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Interleucina-1beta/farmacología , Interleucina-8/metabolismo , Mutación , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triazoles/farmacología
6.
Am J Physiol Lung Cell Mol Physiol ; 308(9): L962-72, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25713319

RESUMEN

Asthma is characterized by airway inflammation and remodeling and CXCL8 is a CXC chemokine that drives steroid-resistant neutrophilic airway inflammation. We have shown that airway smooth muscle (ASM) cells isolated from asthmatic individuals secrete more CXCL8 than cells from nonasthmatic individuals. Here we investigated chromatin modifications at the CXCL8 promoter in ASM cells from nonasthmatic and asthmatic donors to further understand how CXCL8 is dysregulated in asthma. ASM cells from asthmatic donors had increased histone H3 acetylation, specifically histone H3K18 acetylation, and increased binding of histone acetyltransferase p300 compared with nonasthmatic donors but no differences in CXCL8 DNA methylation. The acetylation reader proteins Brd3 and Brd4 were bound to the CXCL8 promoter and Brd inhibitors inhibited CXCL8 secretion from ASM cells by disrupting Brd4 and RNA polymerase II binding to the CXCL8 promoter. Our results show a novel dysregulation of CXCL8 transcriptional regulation in asthma characterized by a promoter complex that is abnormal in ASM cells isolated from asthmatic donors and can be modulated by Brd inhibitors. Brd inhibitors may provide a new therapeutic strategy for steroid-resistant inflammation.


Asunto(s)
Asma/metabolismo , Interleucina-8/metabolismo , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Acetilación , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Humanos , Inflamación/inmunología , Interleucina-8/antagonistas & inhibidores , Interleucina-8/genética , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo
7.
J Immunol ; 189(2): 819-31, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22689881

RESUMEN

Vascular endothelial growth factor (VEGF), a key angiogenic molecule, is aberrantly expressed in several diseases including asthma where it contributes to bronchial vascular remodeling and chronic inflammation. Asthmatic human airway smooth muscle cells hypersecrete VEGF, but the mechanism is unclear. In this study, we defined the mechanism in human airway smooth muscle cells from nonasthmatic and asthmatic patients. We found that asthmatic cells lacked a repression complex at the VEGF promoter, which was present in nonasthmatic cells. Recruitment of G9A, trimethylation of histone H3 at lysine 9 (H3K9me3), and a resultant decrease in RNA polymerase II at the VEGF promoter was critical to repression of VEGF secretion in nonasthmatic cells. At the asthmatic promoter, H3K9me3 was absent because of failed recruitment of G9a; RNA polymerase II binding, in association with TATA-binding protein-associated factor 1, was increased; H3K4me3 was present; and Sp1 binding was exaggerated and sustained. In contrast, DNA methylation and histone acetylation were similar in asthmatic and nonasthmatic cells. This is the first study, to our knowledge, to show that airway cells in asthma have altered epigenetic regulation of remodeling gene(s). Histone methylation at genes such as VEGF may be an important new therapeutic target.


Asunto(s)
Asma/metabolismo , Asma/patología , Bronquios/patología , Metilación de ADN , Histonas/metabolismo , Miocitos del Músculo Liso/patología , Regulación hacia Arriba/inmunología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/genética , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Asma/inmunología , Bronquios/metabolismo , Células Cultivadas , Metilación de ADN/inmunología , Histonas/genética , Humanos , Miocitos del Músculo Liso/inmunología , Miocitos del Músculo Liso/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transcripción Genética/inmunología , Regulación hacia Arriba/genética , Factor A de Crecimiento Endotelial Vascular/genética
8.
Pulm Pharmacol Ther ; 26(1): 75-85, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22800879

RESUMEN

Regulation of phenotypic plasticity in smooth muscle requires an understanding of the mechanisms regulating phenotype-specific genes and the processes dysregulated during pathogenesis. Decades of study in airway smooth muscle has provided extensive knowledge of the gene expression patterns and signaling pathways necessary to maintain and alter smooth muscle cell phenotype. With this solid foundation, the importance and complexity of inheritable epigenetic modifications and mechanisms silencing gene expression have now emerged as fundamental components regulating aspects of inflammation, proliferation and remodeling.


Asunto(s)
Epigénesis Genética , MicroARNs/metabolismo , Miocitos del Músculo Liso/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/genética , Animales , Proliferación Celular , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Inflamación/genética , Inflamación/patología , Fenotipo , Transducción de Señal
9.
Pulm Pharmacol Ther ; 26(1): 64-74, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22634303

RESUMEN

Airway smooth muscle (ASM) is the main regulator of bronchomotor tone. Extensive studies show that in addition to their physical property, human airway smooth muscle (ASM) cells can participate in inflammatory processes modulating the initiation, perpetuation, amplification, and perhaps resolution of airway inflammation. Upon stimulation or interaction with immune cells, ASM cells produce and secrete a variety of inflammatory cytokines and chemokines, cell adhesion molecules, and extracellular matrix (ECM) proteins. These released mediators can, in turn, contribute to the inflammatory state, airway hyperresponsiveness, and airway remodeling present in asthma. As our knowledge of ASM myocyte biology improves, novel bioactive factors are emerging as potentially important regulators of inflammation. This review provides an overview of our understanding of some of these molecules, identifies rising questions, and proposes future studies to better define their role in ASM cell modulation of inflammation and immunity in the lung and respiratory diseases.


Asunto(s)
Inflamación/patología , Miocitos del Músculo Liso/metabolismo , Enfermedades Respiratorias/fisiopatología , Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Animales , Asma/inmunología , Asma/fisiopatología , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Humanos , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/fisiopatología , Músculo Liso/citología , Músculo Liso/inmunología , Músculo Liso/metabolismo , Miocitos del Músculo Liso/inmunología , Enfermedades Respiratorias/inmunología
10.
Environ Pollut ; 337: 122561, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37742862

RESUMEN

Household air pollution caused by inefficient cooking practices causes 4 million deaths a year worldwide. In Nepal, 86% of the rural population use solid fuels for cooking. Over 25% of premature deaths associated with air pollution are respiratory in nature. Here we aimed to identify molecular signatures of different cookstove and fuel type exposures in human airway epithelial cells, to understand the mechanisms mediating cook stove smoke induced lung disease. Primary human airway epithelial cells in submerged culture were exposed to traditional cook stove (TCS), improved cook stove (ICS) and liquefied petroleum gas (LPG) stove smoke extracts. Changes to gene expression, DNA methylation and hydroxymethylation were measured by bulk RNA sequencing and HumanMethylationEPIC BeadChip following oxidative bisulphite conversion, respectively. TCS smoke extract alone reproducibly caused changes in the expression of 52 genes enriched for oxidative stress pathways. TCS, ICS and LPG smoke extract exposures were associated with distinct changes to DNA methylation and hydroxymethylation. A subset of TCS induced genes were associated with differentially methylated and/or hydroxymethylated CpGs sites, and enriched for the ferroptosis pathway and the upstream regulator NFE2L2. DNA methylation and hydroxymethylation changes not associated with a concurrent change in gene expression, were linked to biological processes and molecular pathways important to airway health, including neutrophil function, transforming growth factor beta signalling, GTPase activity, and cell junction organisation. Our data identified differential impacts of TCS, ICS and LPG cook stove smoke on the human airway epithelium transcriptome, DNA methylome and hydroxymethylome and provide further insight into the association between indoor air pollution exposure and chronic lung disease mechanisms.


Asunto(s)
Contaminación del Aire Interior , Enfermedades Pulmonares , Petróleo , Humanos , Humo/efectos adversos , Nepal , Metilación de ADN , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Culinaria , Población Rural , Expresión Génica
11.
Am J Physiol Lung Cell Mol Physiol ; 303(11): L953-5, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23023969

RESUMEN

Maintenance of airway tone, prevention of airway obstruction, and acute relief from bronchospasm are key targets of asthma therapy. This role is currently performed by ß-agonists. However, chronic use of ß-agonists to treat asthma is associated with desensitization of ß-agonist signaling and a resultant loss of bronchodilator effect, worsening of airway hyperreactivity, and increased incidence of asthma-related morbidity and mortality. There have been several attempts to identify novel non-ß-agonist bronchodilators including ATP-sensitive potassium channel (K(ATP)) agonists such as cromakalim and its active enantiomer BRL-38227 and the cGMP activators atrial natriuretic peptide (ANP) and BAY 41-22722. However, these either have not made it to clinical trial, required high doses, had little effect in patients, or had a high incidence of side effects. Recent data suggests that a novel bronchodilator target exists, the bitter taste receptor TAS2R. Two recent studies [An SS, Wang WC, Koziol-White CJ, Ahn K, Lee DY, Kurten RC, Panettieri RA Jr, Liggett SB. Am J Physiol Lung Cell Mol Physiol 303: L304-L311, 2012; Pulkkinen V, Manson ML, Säfholm J, Adner M, Dahlén SE. Am J Physiol Lung Cell Mol Physiol. doi:10.1152/ajplung.00205.2012.] provide new understanding of the signaling pathways utilized by TAS2Rs to mediate their bronchodilatory effects and how TAS2R-mediated bronchodilation is affected by ß-agonist signaling desensitization. As our understanding of TAS2Rs and their agonists increases, they move closer to a viable therapeutic option; however, further definition is still required and questions remain to be answered. This editorial focus discusses these studies within the context of existing literature and raises questions and challenges for the future development of bitter (better?) therapies for asthma.


Asunto(s)
Broncodilatadores/farmacología , Cloroquina/farmacología , Relajación Muscular/fisiología , Músculo Liso/fisiología , Compuestos de Amonio Cuaternario/farmacología , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fenómenos Fisiológicos Respiratorios , Sistema Respiratorio/metabolismo , Taquifilaxis/fisiología , Tráquea/fisiología , Animales , Humanos , Masculino , Receptores Acoplados a Proteínas G/agonistas
12.
Am J Physiol Lung Cell Mol Physiol ; 302(8): L785-92, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22246000

RESUMEN

Monocyte chemotactic protein-1 (MCP-1) is a member of the CC family of cytokines. It has monocyte and lymphocyte chemotactic activity and stimulates histamine release from basophils. MCP-1 is implicated in the pathogenesis of inflammatory diseases, including asthma. The airway smooth muscle (ASM) layer is thickened in asthma, and the growth factors and cytokines secreted by ASM cells play a role in the inflammatory response of the bronchial wall. Glucocorticoids and ß(2)-agonists are first-line drug treatments for asthma. Little is known about the effect of asthma treatments on MCP-1 production from human ASM cells. Here, we determined the effect of ciclesonide (a glucocorticoid) and formoterol (a ß(2)-agonist) on MCP-1 production from human ASM cells. TNFα and IL-1ß induced MCP-1 secretion from human ASM cells. Formoterol had no effect on MCP-1 expression, while ciclesonide significantly inhibited IL-1ß- and TNFα-induced MCP-1. Furthermore, ciclesonide inhibited IL-1ß- and TNFα-induced MCP-1 mRNA and IL-1ß- and TNFα-induced MCP-1 promoter and enhancer luciferase reporters. Western blots showed that ciclesonide had no effect on IκB degradation. Finally, ciclesonide inhibited an NF-κB luciferase reporter. Our data show that ciclesonide inhibits IL-1ß- and TNFα-induced MCP-1 production from human ASM cells via a transcriptional mechanism involving inhibition of NF-κB binding.


Asunto(s)
Antialérgicos/farmacología , Quimiocina CCL2/metabolismo , Interleucina-1beta/farmacología , Músculo Liso/efectos de los fármacos , Pregnenodionas/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Broncodilatadores/farmacología , Línea Celular , Quimiocina CCL2/biosíntesis , Etanolaminas/farmacología , Fumarato de Formoterol , Humanos , Proteínas I-kappa B/metabolismo , Pulmón/efectos de los fármacos
13.
J Biol Chem ; 285(38): 29101-10, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20833730

RESUMEN

Asthmatic airway smooth muscle (ASM) expresses interferon-γ-inducible protein-10 (CXCL10), a chemokine known to mediate mast cell migration into ASM bundles that has been reported in the airways of asthmatic patients. CXCL10 is elevated in patients suffering from viral exacerbations of asthma and in patients with chronic obstructive pulmonary disease (COPD), diseases in which corticosteroids are largely ineffective. IFNγ and TNFα synergistically induce CXCL10 release from human ASM cells in a steroid-insensitive manner, via an as yet undefined mechanism. We report that TNFα activates the classical NF-κB (nuclear factor κB) pathway, whereas IFNγ activates JAK2/STAT-1α and that inhibition of the JAK/STAT pathway is more effective in abrogating CXCL10 release than the steroid fluticasone. The synergy observed with TNFα and IFNγ together, however, did not lie at the level of NF-κB activation, STAT-1α phosphorylation, or in vivo binding of these transcription factors to the CXCL10 promoter. Stimulation of human ASM cells with TNFα and IFNγ induced histone H4 but not histone H3 acetylation at the CXCL10 promoter, although no synergism was observed when both cytokines were combined. We show, however, that TNFα and IFNγ exert a synergistic effect on the recruitment of CREB-binding protein (CBP) to the CXCL10, which is accompanied by increased RNA polymerase II. Our results provide evidence that synergism between TNFα and IFNγ lies at the level of coactivator recruitment in human ASM and suggest that inhibition of JAK/STAT signaling may be of therapeutic benefit in steroid-resistant airway disease.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Quimiocina CXCL10/metabolismo , Interferón gamma/farmacología , Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Western Blotting , Proteína de Unión a CREB/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Quimiocina CXCL10/genética , Inmunoprecipitación de Cromatina , Humanos , Miocitos del Músculo Liso/efectos de los fármacos , FN-kappa B/genética , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , ARN Polimerasa II/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT1/genética
14.
Cells ; 10(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34440746

RESUMEN

Fibroblasts are an integral part of connective tissue and play a crucial role in developing and modulating the structural framework of tissues by acting as the primary source of extracellular matrix (ECM). A precise definition of the fibroblast remains elusive. Lung fibroblasts orchestrate the assembly and turnover of ECM to facilitate gas exchange alongside performing immune functions including the secretion of bioactive molecules and antigen presentation. DNA methylation is the covalent attachment of a methyl group to primarily cytosines within DNA. DNA methylation contributes to diverse cellular phenotypes from the same underlying genetic sequence, with DNA methylation profiles providing a memory of cellular origin. The lung fibroblast population is increasingly viewed as heterogeneous with between 6 and 11 mesenchymal populations identified across health and lung disease to date. DNA methylation has been associated with different lung fibroblast populations in health and with alterations in lung disease, but to varying extents. In this review, we will discuss lung fibroblast heterogeneity and the evidence for a contribution from DNA methylation to defining cell populations and alterations in disease.


Asunto(s)
Metilación de ADN , Fibrosis Pulmonar/patología , Asma/metabolismo , Asma/patología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Matriz Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Fibrosis Pulmonar/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología
15.
Clin Epigenetics ; 12(1): 145, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008450

RESUMEN

BACKGROUND: Mesenchymal fibroblasts are ubiquitous cells that maintain the extracellular matrix of organs. Within the lung, airway and parenchymal fibroblasts are crucial for lung development and are altered with disease, but it has been difficult to understand their roles due to the lack of distinct molecular markers. We studied genome-wide DNA methylation and gene expression in airway and parenchymal lung fibroblasts from healthy and asthmatic donors, to identify a robust cell marker and to determine if these cells are molecularly distinct in asthma. RESULTS: Airway (N = 8) and parenchymal (N = 15) lung fibroblasts from healthy individuals differed in the expression of 158 genes, and DNA methylation of 3936 CpGs (Bonferroni adjusted p value < 0.05). Differential DNA methylation between cell types was associated with differential expression of 42 genes, but no single DNA methylation CpG feature (location, effect size, number) defined the interaction. Replication of gene expression and DNA methylation in a second cohort identified TWIST1 gene expression, DNA methylation and protein expression as a cell marker of airway and parenchymal lung fibroblasts, with DNA methylation having 100% predictive discriminatory power. DNA methylation was differentially altered in parenchymal (112 regions) and airway fibroblasts (17 regions) with asthmatic status, with no overlap between regions. CONCLUSIONS: Differential methylation of TWIST1 is a robust cell marker of airway and parenchymal lung fibroblasts. Airway and parenchymal fibroblast DNA methylation are differentially altered in individuals with asthma, and the role of both cell types should be considered in the pathogenesis of asthma.


Asunto(s)
Asma/genética , Metilación de ADN/genética , Fibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Tejido Parenquimatoso/citología , Proteína 1 Relacionada con Twist/metabolismo , Anciano , Remodelación de las Vías Aéreas (Respiratorias)/genética , Asma/patología , Biomarcadores/metabolismo , Estudios de Casos y Controles , Islas de CpG/genética , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas
16.
Chest ; 155(4): 816-824, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30414795

RESUMEN

Epigenetic changes are heritable changes in gene expression, without changing the DNA sequence. Epigenetic processes provide a critical link between environmental insults to the airway and functional changes that determine how airway cells respond to future stimuli. There are three primary epigenetic processes: histone modifications, DNA modification, and noncoding RNAs. Airway smooth muscle has several important roles in the development and maintenance of the pathologic processes occurring in asthma, including inflammation, remodeling, and contraction/hyperresponsiveness. In this review, we describe the evidence for the role of epigenetic changes in driving these processes in airway smooth muscle cells in asthma, with a particular focus on histone modifications. We also discuss how existing therapies may target some of these changes and how epigenetic processes provide targets for the development of novel asthma therapeutics. Epigenetic marks may also provide a biomarker to assess phenotype and treatment responses.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Asma/fisiopatología , Epigénesis Genética , Asma/genética , Humanos , Músculo Liso/fisiopatología
17.
Sci Rep ; 9(1): 14409, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31595000

RESUMEN

The airway epithelium forms the interface between the inhaled environment and the lung. The airway epithelium is dysfunctional in asthma and epigenetic mechanisms are considered a contributory factor. We hypothesised that the DNA methylation profiles of cultured primary airway epithelial cells (AECs) would differ between cells isolated from individuals with asthma (n = 17) versus those without asthma (n = 16). AECs were isolated from patients by two different isolation techniques; pronase digestion (9 non-asthmatic, 8 asthmatic) and bronchial brushings (7 non-asthmatic and 9 asthmatic). DNA methylation was assessed using an Illumina Infinium HumanMethylation450 BeadChip array. DNA methylation of AECs clustered by isolation technique and linear regression identified 111 CpG sites differentially methylated between isolation techniques in healthy individuals. As a consequence, the effect of asthmatic status on DNA methylation was assessed within AEC samples isolated using the same technique. In pronase isolated AECs, 15 DNA regions were differentially methylated between asthmatics and non-asthmatics. In bronchial brush isolated AECs, 849 differentially methylated DNA regions were identified with no overlap to pronase regions. In conclusion, regardless of cell isolation technique, differential DNA methylation was associated with asthmatic status in AECs, providing further evidence for aberrant DNA methylation as a signature of epithelial dysfunction in asthma.


Asunto(s)
Asma/genética , Metilación de ADN/genética , Epigénesis Genética , Pulmón/metabolismo , Adulto , Asma/patología , Bronquios/metabolismo , Bronquios/patología , Células Cultivadas , Islas de CpG/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Regulación de la Expresión Génica/genética , Humanos , Pulmón/patología , Masculino , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología
18.
Clin Epigenetics ; 10: 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527240

RESUMEN

Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease of the lungs that is currently the fourth leading cause of death worldwide. Genetic factors account for only a small amount of COPD risk, but epigenetic mechanisms, including DNA methylation, have the potential to mediate the interactions between an individual's genetics and environmental exposure. DNA methylation is highly cell type-specific, and individual cell type studies of DNA methylation in COPD are sparse. Fibroblasts are present within the airway and parenchyma of the lung and contribute to the aberrant deposition of extracellular matrix in COPD. No assessment or comparison of genome-wide DNA methylation profiles in the airway and parenchymal fibroblasts from individuals with and without COPD has been undertaken. These data provide valuable insight into the molecular mechanisms contributing to COPD and the differing pathologies of small airways disease and emphysema in COPD. Methods: Genome-wide DNA methylation was evaluated at over 485,000 CpG sites using the Illumina Infinium HumanMethylation450 BeadChip array in the airway (non-COPD n = 8, COPD n = 7) and parenchymal fibroblasts (non-COPD n = 17, COPD n = 29) isolated from individuals with and without COPD. Targeted gene expression was assessed by qPCR in matched RNA samples. Results: Differentially methylated DNA regions were identified between cells isolated from individuals with and without COPD in both airway and parenchymal fibroblasts. Only in parenchymal fibroblasts was differential DNA methylation associated with differential gene expression. A second analysis of differential DNA methylation variability identified 359 individual differentially variable CpG sites in parenchymal fibroblasts. No differentially variable CpG sites were identified in the airway fibroblasts. Five differentially variable-methylated CpG sites, associated with three genes, were subsequently assessed for gene expression differences. Two genes (OAT and GRIK2) displayed significantly increased gene expression in cells isolated from individuals with COPD. Conclusions: Differential and variable DNA methylation was associated with COPD status in the parenchymal fibroblasts but not airway fibroblasts. Aberrant DNA methylation was associated with altered gene expression imparting biological function to DNA methylation changes. Changes in DNA methylation are therefore implicated in the molecular mechanisms underlying COPD pathogenesis and may represent novel therapeutic targets.


Asunto(s)
Metilación de ADN , Pulmón/química , Ornitina-Oxo-Ácido Transaminasa/genética , Tejido Parenquimatoso/química , Enfermedad Pulmonar Obstructiva Crónica/genética , Receptores de Ácido Kaínico/genética , Regulación hacia Arriba , Anciano , Células Cultivadas , Islas de CpG , Epigénesis Genética , Femenino , Fibroblastos/química , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Humanos , Pulmón/citología , Masculino , Persona de Mediana Edad , Especificidad de Órganos , Tejido Parenquimatoso/citología , Análisis de Secuencia de ADN , Receptor de Ácido Kaínico GluK2
19.
PLoS One ; 11(8): e0158047, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27494713

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive disease with poor survival rates and limited treatment options. Upregulation of αvß6 integrins within the alveolar epithelial cells is a characteristic feature of IPF and correlates with poor patient survival. The pro-fibrotic cytokine TGFß1 can upregulate αvß6 integrin expression but the molecular mechanisms driving this effect have not previously been elucidated. We confirm that stimulation with exogenous TGFß1 increases expression of the integrin ß6 subunit gene (ITGB6) and αvß6 integrin cell surface expression in a time- and concentration-dependent manner. TGFß1-induced ITGB6 expression occurs via transcriptional activation of the ITGB6 gene, but does not result from effects on ITGB6 mRNA stability. Basal expression of ITGB6 in, and αvß6 integrins on, lung epithelial cells occurs via homeostatic αvß6-mediated TGFß1 activation in the absence of exogenous stimulation, and can be amplified by TGFß1 activation. Fundamentally, we show for the first time that TGFß1-induced ITGB6 expression occurs via canonical Smad signalling since dominant negative constructs directed against Smad3 and 4 inhibit ITGB6 transcriptional activity. Furthermore, disruption of a Smad binding site at -798 in the ITGB6 promoter abolishes TGFß1-induced ITGB6 transcriptional activity. Using chromatin immunoprecipitation we demonstrate that TGFß1 stimulation of lung epithelial cells results in direct binding of Smad3, and Smad4, to the ITGB6 gene promoter within this region. Finally, using an adenoviral TGFß1 over-expression model of pulmonary fibrosis we demonstrate that Smad3 is crucial for TGFß1-induced αvß6 integrin expression within the alveolar epithelium in vivo. Together, these data confirm that a homeostatic, autocrine loop of αvß6 integrin activated TGFß1-induced ITGB6 gene expression regulates epithelial basal αvß6 integrin expression, and demonstrates that this occurs via Smad-dependent transcriptional regulation at a single Smad binding site in the promoter of the ß6 subunit gene. Active TGFß1 amplifies this pathway both in vitro and in vivo, which may promote fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática/patología , Cadenas beta de Integrinas/metabolismo , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Sitios de Unión , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Cadenas beta de Integrinas/genética , Integrinas/genética , Integrinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas , Estabilidad del ARN/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteína smad3/genética , Proteína smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
20.
Curr Pharm Des ; 17(7): 653-66, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21406061

RESUMEN

The 10% of patients with the most severe asthma are responsible for a large part of healthcare expenditure and morbidity. Understanding the processes involved is key if new therapeutic approaches are to be developed. Evidence is accumulating that chronic diseases such as asthma are associated with temporal and spatial alterations in the pattern of inflammatory gene expression within the airways. Expression of these genes can be regulated by transcriptional, posttranscriptional, translational and epigenetic mechanisms. It is well established that binding of activated transcription factors to specific inducible gene promoter sites is tightly controlled by chromatin state as a result of histone modifications, particularly the balance between histone acetylation and deacetylation [1]. The interaction between transcription factors and the promoter is key to the diversification of gene expression in a time dependent manner leading to altered gene expression profiles. Alterations of the accessibility of transcription factors to the DNA can have residing effects upon gene transcription. This review will focus on the regulation of several groups of key genes which are involved in chronic airway inflammation and remodelling in asthma drawing mainly from our experience of studying these processes in airway smooth muscle cells. An overview is shown in figure 1.


Asunto(s)
Asma/genética , Regulación de la Expresión Génica , Mediadores de Inflamación/fisiología , Elementos Reguladores de la Transcripción/fisiología , Índice de Severidad de la Enfermedad , Animales , Asma/inmunología , Humanos , Inflamación/genética , Inflamación/inmunología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA