Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 23(27): 275701, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22706842

RESUMEN

A comprehensive study of the optical properties of PbS nanocrystals (NCs) is reported that includes the temperature dependent absorption, photoluminescence (PL) and PL lifetime in the range of 3-300 K. The absorption and PL are found to display different temperature dependent behaviour though both redshift as temperature is reduced. This results in a temperature dependent Stokes shift which increases from ∼75 meV at 300 K with reducing temperature until saturating at ∼130 meV below ∼150 K prior to a small reduction to 125 meV upon cooling from 25 to 3 K. The PL lifetime is found to be single exponential at 3 K with a lifetime of τ(1) = 6.5 µs. Above 3 K biexponential behaviour is observed with the lifetime for each process displaying a different temperature dependence. The Stokes shift is modelled using a three-level rate equation model incorporating temperature dependent parameter values obtained via fitting phenomenological relationships to the observed absorption and PL behaviour. This results in a predicted energy difference between the two emitting states of ∼6 meV which is close to the excitonic exchange energy splitting predicted theoretically for these systems.


Asunto(s)
Cristalización/métodos , Plomo/química , Mediciones Luminiscentes/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Refractometría/métodos , Compuestos de Selenio/química , Luminiscencia , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Temperatura
2.
J Phys Condens Matter ; 23(3): 035801, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21406869

RESUMEN

We report the optical measurement of the spin dynamics at elevated temperatures and in zero magnetic field for two types of degenerately doped n-InSb quantum wells (QWs), one asymmetric (sample A) and one symmetric (sample B) with regards to the electrostatic potential across the QW. Making use of three directly determined experimental parameters: the spin lifetime, τ(s), the sheet carrier concentration, n, and the electron mobility, µ, we directly extract the zero-field spin splitting. For the asymmetric sample where the Rashba interaction is the dominant source of spin splitting, we deduce a room temperature Rashba parameter of α = 0.09 ± 0.1 eV Å which is in good agreement with calculations and we estimate the Rashba coefficient α(0) (a figure of merit for the ease with which electron spins can be modulated via an electric field). We review the merits/limitations of this approach and the implications of our findings for spintronic devices.

4.
Nat Commun ; 4: 1469, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23403570

RESUMEN

Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10(5) T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H(2) analogues, and for investigation of He(2), a bound molecule predicted under extreme field conditions.

5.
Phys Med Biol ; 56(14): 4177-99, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21701054

RESUMEN

Optical computed tomography (CT), in conjunction with radiochromic gels and plastics, shows great potential for radiation therapy dose verification in 3D. However, an effective quality assurance (QA) regime for the various scanners currently available still remains to be developed. We show how the favourable properties of the PRESAGE® radiochromic polymer may be exploited to create highly sophisticated QA phantoms. Five 60 mm diameter cylindrical PRESAGE® samples were irradiated using the x-ray microbeam radiation therapy facility on the ID-17 biomedical beamline at the European Synchrotron Radiation Facility. Samples were then imaged on the University of Surrey parallel-beam optical CT scanner. The sample irradiations were designed to allow a variety of tests to be performed, including assessments of linearity, modulation transfer function (three independent measurements), geometric distortion and the effect of treatment fractionation. It is clear that, although the synchrotron method produces extremely high-quality test objects, it is not practical on a routine basis, because of its reliance on a highly specialized radiation source. Hence, we investigated a second possibility: three PRESAGE® samples were illuminated with ultraviolet light of wavelength 365 nm, using cheap masks created by laser-printing patterns onto overhead projector acetate sheets. There was good correlation between optical densities measured by the CT scanner and the expected UV 'dose' delivered. The results are encouraging and a proposal is made for a scanner test regime based on calibrated and well-characterized PRESAGE® samples.


Asunto(s)
Fenómenos Ópticos , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/normas , Modelos Lineales , Control de Calidad , Dosis de Radiación , Radioterapia , Sincrotrones , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA