Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(5): e2211939120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36693107

RESUMEN

Streptococcus pyogenes (group A Streptococcus) is a clinically important microbial pathogen that requires iron in order to proliferate. During infections, S. pyogenes uses the surface displayed Shr receptor to capture human hemoglobin (Hb) and acquires its iron-laden heme molecules. Through a poorly understood mechanism, Shr engages Hb via two structurally unique N-terminal Hb-interacting domains (HID1 and HID2) which facilitate heme transfer to proximal NEAr Transporter (NEAT) domains. Based on the results of X-ray crystallography, small angle X-ray scattering, NMR spectroscopy, native mass spectrometry, and heme transfer experiments, we propose that Shr utilizes a "cap and release" mechanism to gather heme from Hb. In the mechanism, Shr uses the HID1 and HID2 modules to preferentially recognize only heme-loaded forms of Hb by contacting the edges of its protoporphyrin rings. Heme transfer is enabled by significant receptor dynamics within the Shr-Hb complex which function to transiently uncap HID1 from the heme bound to Hb's ß subunit, enabling the gated release of its relatively weakly bound heme molecule and subsequent capture by Shr's NEAT domains. These dynamics may maximize the efficiency of heme scavenging by S. pyogenes, enabling it to preferentially recognize and remove heme from only heme-loaded forms of Hb that contain iron.


Asunto(s)
Hemoglobinas , Streptococcus pyogenes , Humanos , Hemoglobinas/metabolismo , Streptococcus pyogenes/química , Proteínas Portadoras/metabolismo , Hemo/metabolismo , Hierro/metabolismo
2.
Proteins ; 92(8): 946-958, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38597224

RESUMEN

Clostridium thermocellum is a potential microbial platform to convert abundant plant biomass to biofuels and other renewable chemicals. It efficiently degrades lignocellulosic biomass using a surface displayed cellulosome, a megadalton sized multienzyme containing complex. The enzymatic composition and architecture of the cellulosome is controlled by several transmembrane biomass-sensing RsgI-type anti-σ factors. Recent studies suggest that these factors transduce signals from the cell surface via a conserved RsgI extracellular (CRE) domain (also called a periplasmic domain) that undergoes autoproteolysis through an incompletely understood mechanism. Here we report the structure of the autoproteolyzed CRE domain from the C. thermocellum RsgI9 anti-σ factor, revealing that the cleaved fragments forming this domain associate to form a stable α/ß/α sandwich fold. Based on AlphaFold2 modeling, molecular dynamics simulations, and tandem mass spectrometry, we propose that a conserved Asn-Pro bond in RsgI9 autoproteolyzes via a succinimide intermediate whose formation is promoted by a conserved hydrogen bond network holding the scissile peptide bond in a strained conformation. As other RsgI anti-σ factors share sequence homology to RsgI9, they likely autoproteolyze through a similar mechanism.


Asunto(s)
Proteínas Bacterianas , Clostridium thermocellum , Simulación de Dinámica Molecular , Proteolisis , Clostridium thermocellum/metabolismo , Clostridium thermocellum/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Factor sigma/química , Factor sigma/metabolismo , Factor sigma/genética , Secuencia de Aminoácidos , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Celulosomas/metabolismo , Celulosomas/química , Cristalografía por Rayos X , Espectrometría de Masas en Tándem , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
3.
Biopolymers ; 115(1): e23539, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37227047

RESUMEN

Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the Cd SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that Cd SrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA (N SpaA) that is also crosslinked by Cd SrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed "latch" mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting N SpaA for access to a shared thioester enzyme-substrate reaction intermediate.


Asunto(s)
Aminoaciltransferasas , Corynebacterium diphtheriae , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Corynebacterium diphtheriae/metabolismo , Proteínas Bacterianas/metabolismo , Lisina , Cadmio/metabolismo , Aminoaciltransferasas/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723052

RESUMEN

Gram-positive bacteria assemble pili (fimbriae) on their surfaces to adhere to host tissues and to promote polymicrobial interactions. These hair-like structures, although very thin (1 to 5 nm), exhibit impressive tensile strengths because their protein components (pilins) are covalently crosslinked together via lysine-isopeptide bonds by pilus-specific sortase enzymes. While atomic structures of isolated pilins have been determined, how they are joined together by sortases and how these interpilin crosslinks stabilize pilus structure are poorly understood. Using a reconstituted pilus assembly system and hybrid structural biology methods, we elucidated the solution structure and dynamics of the crosslinked interface that is repeated to build the prototypical SpaA pilus from Corynebacterium diphtheriae We show that sortase-catalyzed introduction of a K190-T494 isopeptide bond between adjacent SpaA pilins causes them to form a rigid interface in which the LPLTG sorting signal is inserted into a large binding groove. Cellular and quantitative kinetic measurements of the crosslinking reaction shed light onto the mechanism of pilus biogenesis. We propose that the pilus-specific sortase in C. diphtheriae uses a latch mechanism to select K190 on SpaA for crosslinking in which the sorting signal is partially transferred from the enzyme to a binding groove in SpaA in order to facilitate catalysis. This process is facilitated by a conserved loop in SpaA, which after crosslinking forms a stabilizing latch that covers the K190-T494 isopeptide bond. General features of the structure and sortase-catalyzed assembly mechanism of the SpaA pilus are likely conserved in Gram-positive bacteria.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Corynebacterium diphtheriae/fisiología , Cisteína Endopeptidasas/metabolismo , Fimbrias Bacterianas/fisiología , Catálisis , Proteínas Fimbrias/metabolismo , Lisina/metabolismo , Unión Proteica
5.
J Biol Chem ; 298(2): 101464, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34864059

RESUMEN

Wall teichoic acid (WTA) polymers are covalently affixed to the Gram-positive bacterial cell wall and have important functions in cell elongation, cell morphology, biofilm formation, and ß-lactam antibiotic resistance. The first committed step in WTA biosynthesis is catalyzed by the TagA glycosyltransferase (also called TarA), a peripheral membrane protein that produces the conserved linkage unit, which joins WTA to the cell wall peptidoglycan. TagA contains a conserved GT26 core domain followed by a C-terminal polypeptide tail that is important for catalysis and membrane binding. Here, we report the crystal structure of the Thermoanaerobacter italicus TagA enzyme bound to UDP-N-acetyl-d-mannosamine, revealing the molecular basis of substrate binding. Native MS experiments support the model that only monomeric TagA is enzymatically active and that it is stabilized by membrane binding. Molecular dynamics simulations and enzyme activity measurements indicate that the C-terminal polypeptide tail facilitates catalysis by encapsulating the UDP-N-acetyl-d-mannosamine substrate, presenting three highly conserved arginine residues to the active site that are important for catalysis (R214, R221, and R224). From these data, we present a mechanistic model of catalysis that ascribes functions for these residues. This work could facilitate the development of new antimicrobial compounds that disrupt WTA biosynthesis in pathogenic bacteria.


Asunto(s)
Proteínas Bacterianas , Glicosiltransferasas , Lipoproteínas , Staphylococcus aureus , Ácidos Teicoicos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Staphylococcus aureus/metabolismo , Especificidad por Sustrato , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Uridina Difosfato/metabolismo
6.
Proteins ; 90(7): 1457-1467, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35194841

RESUMEN

Clostridium thermocellum is actively being developed as a microbial platform to produce biofuels and chemicals from renewable plant biomass. An attractive feature of this bacterium is its ability to efficiently degrade lignocellulose using surface-displayed cellulosomes, large multi-protein complexes that house different types of cellulase enzymes. Clostridium thermocellum tailors the enzyme composition of its cellulosome using nine membrane-embedded anti-σ factors (RsgI1-9), which are thought to sense different types of extracellular carbohydrates and then elicit distinct gene expression programs via cytoplasmic σ factors. Here we show that the RsgI9 anti-σ factor interacts with cellulose via a C-terminal bi-domain unit. A 2.0 Å crystal structure reveals that the unit is constructed from S1C peptidase and NTF2-like protein domains that contain a potential binding site for cellulose. Small-angle X-ray scattering experiments of the intact ectodomain indicate that it adopts a bi-lobed, elongated conformation. In the structure, a conserved RsgI extracellular (CRE) domain is connected to the bi-domain via a proline-rich linker, which is expected to project the carbohydrate-binding unit ~160 Å from the cell surface. The CRE and proline-rich elements are conserved in several other C. thermocellum anti-σ factors, suggesting that they will also form extended structures that sense carbohydrates.


Asunto(s)
Celulosomas , Clostridium thermocellum , Proteínas Bacterianas/química , Biomasa , Celulosa/metabolismo , Celulosomas/química , Clostridium thermocellum/metabolismo , Prolina/metabolismo , Factor sigma/química
7.
Proc Natl Acad Sci U S A ; 116(36): 18041-18049, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427528

RESUMEN

Assembly of pili on the gram-positive bacterial cell wall involves 2 conserved transpeptidase enzymes named sortases: One for polymerization of pilin subunits and another for anchoring pili to peptidoglycan. How this machine controls pilus length and whether pilus length is critical for cell-to-cell interactions remain unknown. We report here in Actinomyces oris, a key colonizer in the development of oral biofilms, that genetic disruption of its housekeeping sortase SrtA generates exceedingly long pili, catalyzed by its pilus-specific sortase SrtC2 that possesses both pilus polymerization and cell wall anchoring functions. Remarkably, the srtA-deficient mutant fails to mediate interspecies interactions, or coaggregation, even though the coaggregation factor CafA is present at the pilus tip. Increasing ectopic expression of srtA in the mutant progressively shortens pilus length and restores coaggregation accordingly, while elevated levels of shaft pilins and SrtC2 produce long pili and block coaggregation by SrtA+ bacteria. With structural studies, we uncovered 2 key structural elements in SrtA that partake in recognition of pilin substrates and regulate pilus length by inducing the capture and transfer of pilus polymers to the cell wall. Evidently, coaggregation requires proper positioning of the tip adhesin CafA via modulation of pilus length by the housekeeping sortase SrtA.


Asunto(s)
Actinomyces , Adhesinas Bacterianas , Aminoaciltransferasas , Proteínas Bacterianas , Cisteína Endopeptidasas , Fimbrias Bacterianas , Actinomyces/química , Actinomyces/genética , Actinomyces/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo
8.
PLoS Pathog ; 15(4): e1007723, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31002736

RESUMEN

Staphylococcus aureus and other bacterial pathogens affix wall teichoic acids (WTAs) to their surface. These highly abundant anionic glycopolymers have critical functions in bacterial physiology and their susceptibility to ß-lactam antibiotics. The membrane-associated TagA glycosyltransferase (GT) catalyzes the first-committed step in WTA biosynthesis and is a founding member of the WecB/TagA/CpsF GT family, more than 6,000 enzymes that synthesize a range of extracellular polysaccharides through a poorly understood mechanism. Crystal structures of TagA from T. italicus in its apo- and UDP-bound states reveal a novel GT fold, and coupled with biochemical and cellular data define the mechanism of catalysis. We propose that enzyme activity is regulated by interactions with the bilayer, which trigger a structural change that facilitates proper active site formation and recognition of the enzyme's lipid-linked substrate. These findings inform upon the molecular basis of WecB/TagA/CpsF activity and could guide the development of new anti-microbial drugs.


Asunto(s)
Proteínas Bacterianas/química , Pared Celular/metabolismo , Lipoproteínas/química , Staphylococcus aureus/enzimología , Ácidos Teicoicos/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Lipoproteínas/metabolismo , Modelos Moleculares , Multimerización de Proteína , Estructura Terciaria de Proteína
9.
Proc Natl Acad Sci U S A ; 115(24): E5477-E5486, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844180

RESUMEN

Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA2M), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Corynebacterium/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Catálisis , Pared Celular/metabolismo , Cristalografía por Rayos X/métodos , Peptidil Transferasas/metabolismo , Polimerizacion
10.
Bioconjug Chem ; 31(6): 1624-1634, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32396336

RESUMEN

Site-specifically modified protein bioconjugates have important applications in biology, chemistry, and medicine. Functionalizing specific protein side chains with enzymes using mild reaction conditions is of significant interest, but remains challenging. Recently, the lysine-isopeptide bond forming activity of the sortase enzyme that builds surface pili in Corynebacterium diphtheriae (CdSrtA) has been reconstituted in vitro. A mutationally activated form of CdSrtA was shown to be a promising bioconjugating enzyme that can attach Leu-Pro-Leu-Thr-Gly peptide fluorophores to a specific lysine residue within the N-terminal domain of the SpaA protein (NSpaA), enabling the labeling of target proteins that are fused to NSpaA. Here we present a detailed analysis of the CdSrtA catalyzed protein labeling reaction. We show that the first step in catalysis is rate limiting, which is the formation of the CdSrtA-peptide thioacyl intermediate that subsequently reacts with a lysine ε-amine in NSpaA. This intermediate is surprisingly stable, limiting spurious proteolysis of the peptide substrate. We report the discovery of a new enzyme variant (CdSrtAΔ) that has significantly improved transpeptidation activity, because it completely lacks an inhibitory polypeptide appendage ("lid") that normally masks the active site. We show that the presence of the lid primarily impairs formation of the thioacyl intermediate and not the recognition of the NSpaA substrate. Quantitative measurements reveal that CdSrtAΔ generates its cross-linked product with a catalytic turnover number of 1.4 ± 0.004 h-1 and that it has apparent KM values of 0.16 ± 0.04 and 1.6 ± 0.3 mM for its NSpaA and peptide substrates, respectively. CdSrtAΔ is 7-fold more active than previously studied variants, labeling >90% of NSpaA with peptide within 6 h. The results of this study further improve the utility of CdSrtA as a protein labeling tool and provide insight into the enzyme catalyzed reaction that underpins protein labeling and pilus biogenesis.


Asunto(s)
Corynebacterium diphtheriae/enzimología , Cisteína Endopeptidasas/química , Lisina/química , Péptidos/química , Biocatálisis , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Cinética , Mutación , Dominios Proteicos
11.
J Lipid Res ; 60(7): 1293-1310, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048406

RESUMEN

Coenzyme Q (CoQ or ubiquinone) serves as an essential redox-active lipid in respiratory electron and proton transport during cellular energy metabolism. CoQ also functions as a membrane-localized antioxidant protecting cells against lipid peroxidation. CoQ deficiency is associated with multiple human diseases; CoQ10 supplementation in particular has noted cardioprotective benefits. In Saccharomyces cerevisiae, Coq10, a putative START domain protein, is believed to chaperone CoQ to sites where it functions. Yeast coq10 deletion mutants (coq10Δ) synthesize CoQ inefficiently during log phase growth and are respiratory defective and sensitive to oxidative stress. Humans have two orthologs of yeast COQ10, COQ10A and COQ10B Here, we tested the human co-orthologs for their ability to rescue the yeast mutant. We showed that expression of either human ortholog, COQ10A or COQ10B, rescues yeast coq10Δ mutant phenotypes, restoring the function of respiratory-dependent growth on a nonfermentable carbon source and sensitivity to oxidative stress induced by treatment with PUFAs. These effects indicate a strong functional conservation of Coq10 across different organisms. However, neither COQ10A nor COQ10B restored CoQ biosynthesis when expressed in the yeast coq10Δ mutant. The involvement of yeast Coq10 in CoQ biosynthesis may rely on its interactions with another protein, possibly Coq11, which is not found in humans. Coexpression analyses of yeast COQ10 and human COQ10A and COQ10B provide additional insights to functions of these START domain proteins and their potential roles in other biologic pathways.


Asunto(s)
Ataxia/metabolismo , Enfermedades Mitocondriales/metabolismo , Debilidad Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Antioxidantes/metabolismo , Ataxia/genética , Humanos , Peroxidación de Lípido/fisiología , Espectrometría de Masas , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Debilidad Muscular/genética , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismo
12.
J Biol Chem ; 293(47): 18365-18377, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301765

RESUMEN

In order to proliferate and mount an infection, many bacterial pathogens need to acquire iron from their host. The most abundant iron source in the body is the oxygen transporter hemoglobin (Hb). Streptococcus pyogenes, a potentially lethal human pathogen, uses the Shr protein to capture Hb on the cell surface. Shr is an important virulence factor, yet the mechanism by which it captures Hb and acquires its heme is not well-understood. Here, we show using NMR and biochemical methods that Shr binds Hb using two related modules that were previously defined as domains of unknown function (DUF1533). These hemoglobin-interacting domains (HIDs), called HID1 and HID2, are autonomously folded and independently bind Hb. The 1.5 Å resolution crystal structure of HID2 revealed that it is a structurally unique Hb-binding domain. Mutagenesis studies revealed a conserved tyrosine in both HIDs that is essential for Hb binding. Our biochemical studies indicate that HID2 binds Hb with higher affinity than HID1 and that the Hb tetramer is engaged by two Shr receptors. NMR studies reveal the presence of a third autonomously folded domain between HID2 and a heme-binding NEAT1 domain, suggesting that this linker domain may position NEAT1 near Hb for heme capture.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemoglobinas/metabolismo , Infecciones Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas Bacterianas/genética , Hemo/metabolismo , Hemoglobinas/química , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Dominios Proteicos , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/química , Streptococcus pyogenes/genética
13.
J Biol Chem ; 293(18): 6942-6957, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29540481

RESUMEN

Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It actively acquires the essential nutrient iron from human hemoglobin (Hb) using the iron-regulated surface-determinant (Isd) system. This process is initiated when the closely related bacterial IsdB and IsdH receptors bind to Hb and extract its hemin through a conserved tri-domain unit that contains two NEAr iron Transporter (NEAT) domains that are connected by a helical linker domain. Previously, we demonstrated that the tri-domain unit within IsdH (IsdHN2N3) triggers hemin release by distorting Hb's F-helix. Here, we report that IsdHN2N3 promotes hemin release from both the α- and ß-subunits. Using a receptor mutant that only binds to the α-subunit of Hb and a stopped-flow transfer assay, we determined the energetics and micro-rate constants of hemin extraction from tetrameric Hb. We found that at 37 °C, the receptor accelerates hemin release from Hb up to 13,400-fold, with an activation enthalpy of 19.5 ± 1.1 kcal/mol. We propose that hemin removal requires the rate-limiting hydrolytic cleavage of the axial HisF8 Nϵ-Fe3+ bond, which, based on molecular dynamics simulations, may be facilitated by receptor-induced bond hydration. Isothermal titration calorimetry experiments revealed that two distinct IsdHN2N3·Hb protein·protein interfaces promote hemin release. A high-affinity receptor·Hb(A-helix) interface contributed ∼95% of the total binding standard free energy, enabling much weaker receptor interactions with Hb's F-helix that distort its hemin pocket and cause unfavorable changes in the binding enthalpy. We present a model indicating that receptor-introduced structural distortions and increased solvation underlie the IsdH-mediated hemin extraction mechanism.


Asunto(s)
Metabolismo Energético , Hemina/aislamiento & purificación , Hemoglobinas/química , Staphylococcus aureus/metabolismo , Antígenos Bacterianos/metabolismo , Sitios de Unión , Biopolímeros/química , Biopolímeros/metabolismo , Calorimetría , Proteínas de Transporte de Catión/metabolismo , Hemina/metabolismo , Hemoglobinas/metabolismo , Humanos , Hidrólisis , Cinética , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Receptores de Superficie Celular/metabolismo , Termodinámica
14.
J Am Chem Soc ; 140(27): 8420-8423, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29927249

RESUMEN

Proteins that are site-specifically modified with peptides and chemicals can be used as novel therapeutics, imaging tools, diagnostic reagents and materials. However, there are few enzyme-catalyzed methods currently available to selectively conjugate peptides to internal sites within proteins. Here we show that a pilus-specific sortase enzyme from Corynebacterium diphtheriae (CdSrtA) can be used to attach a peptide to a protein via a specific lysine-isopeptide bond. Using rational mutagenesis we created CdSrtA3M, a highly activated cysteine transpeptidase that catalyzes in vitro isopeptide bond formation. CdSrtA3M mediates bioconjugation to a specific lysine residue within a fused domain derived from the corynebacterial SpaA protein. Peptide modification yields greater than >95% can be achieved. We demonstrate that CdSrtA3M can be used in concert with the Staphylococcus aureus SrtA enzyme, enabling dual, orthogonal protein labeling via lysine-isopeptide and backbone-peptide bonds.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Corynebacterium diphtheriae/enzimología , Cisteína Endopeptidasas/metabolismo , Colorantes Fluorescentes/metabolismo , Lisina/metabolismo , Péptidos/metabolismo , Proteínas Bacterianas/química , Corynebacterium diphtheriae/metabolismo , Proteínas Fimbrias/metabolismo , Colorantes Fluorescentes/química , Lisina/química , Modelos Moleculares , Péptidos/química , Polimerizacion , Coloración y Etiquetado , Staphylococcus aureus/enzimología
15.
Appl Microbiol Biotechnol ; 102(15): 6547-6565, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29796970

RESUMEN

Microbes engineered to display heterologous proteins could be useful biotechnological tools for protein engineering, lignocellulose degradation, biocatalysis, bioremediation, and biosensing. Bacillus subtilis is a promising host to display proteins, as this model Gram-positive bacterium is genetically tractable and already used industrially to produce enzymes. To gain insight into the factors that affect displayed protein stability and copy number, we systematically compared the ability of different protease-deficient B. subtilis strains (WB800, BRB07, BRB08, and BRB14) to display a Cel8A-LysM reporter protein in which the Clostridium thermocellum Cel8A endoglucanase is fused to LysM cell wall binding modules. Whole-cell cellulase measurements and fractionation experiments demonstrate that genetically eliminating extracytoplasmic bacterial proteases improves Cel8A-LysM display levels. However, upon entering stationary phase, for all protease-deficient strains, the amount of displayed reporter dramatically decreases, presumably as a result of cellular autolysis. This problem can be partially overcome by adding chemical protease inhibitors, which significantly increase protein display levels. We conclude that strain BRB08 is well suited for stably displaying our reporter protein, as genetic removal of its extracellular and cell wall-associated proteases leads to the highest levels of surface-accumulated Cel8A-LysM without causing secretion stress or impairing growth. A two-step procedure is presented that enables the construction of enzyme-coated vegetative B. subtilis cells that retain stable cell-associated enzyme activity for nearly 3 days. The results of this work could aid the development of whole-cell display systems that have useful biotechnological applications.


Asunto(s)
Bacillus subtilis/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Celulasa/metabolismo , Clostridium thermocellum/enzimología , Clostridium thermocellum/genética
16.
Proc Natl Acad Sci U S A ; 111(22): 8179-84, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843155

RESUMEN

The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.


Asunto(s)
Macrófagos/inmunología , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/parasitología , Proteínas Protozoarias/inmunología , Tricomoniasis/inmunología , Trichomonas vaginalis/inmunología , Secuencia de Aminoácidos , Línea Celular Tumoral , Células Cultivadas , Secuencia Conservada , Humanos , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/inmunología , Macrófagos/citología , Macrófagos/parasitología , Masculino , Datos de Secuencia Molecular , Próstata/inmunología , Próstata/parasitología , Próstata/patología , Neoplasias de la Próstata/patología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología de Secuencia , Tricomoniasis/complicaciones , Tricomoniasis/parasitología , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo
17.
J Biol Chem ; 290(42): 25461-74, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26324714

RESUMEN

The endospore forming bacterium Bacillus anthracis causes lethal anthrax disease in humans and animals. The ability of this pathogen to replicate within macrophages is dependent upon the display of bacterial surface proteins attached to the cell wall by the B. anthracis Sortase A ((Ba)SrtA) enzyme. Previously, we discovered that the class A (Ba)SrtA sortase contains a unique N-terminal appendage that wraps around the body of the protein to contact the active site of the enzyme. To gain insight into its function, we determined the NMR structure of (Ba)SrtA bound to a LPXTG sorting signal analog. The structure, combined with dynamics, kinetics, and whole cell protein display data suggest that the N terminus modulates substrate access to the enzyme. We propose that it may increase the efficiency of protein display by reducing the unproductive hydrolytic cleavage of enzyme-protein covalent intermediates that form during the cell wall anchoring reaction. Notably, a key active site loop (ß7/ß8 loop) undergoes a disordered to ordered transition upon binding the sorting signal, potentially facilitating recognition of lipid II.


Asunto(s)
Aminoaciltransferasas/química , Bacillus anthracis/enzimología , Proteínas Bacterianas/química , Cisteína Endopeptidasas/química , Señales de Clasificación de Proteína , Aminoaciltransferasas/metabolismo , Bacillus anthracis/patogenicidad , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Especificidad por Sustrato
19.
J Biomol NMR ; 64(3): 197-205, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26852413

RESUMEN

Many proteins can't be studied using solution NMR methods because they have limited solubility. To overcome this problem, recalcitrant proteins can be fused to a more soluble protein that functions as a solubility tag. However, signals arising from the solubility tag hinder data analysis because they increase spectral complexity. We report a new method to rapidly and efficiently add a non-isotopically labeled Small Ubiquitin-like Modifier protein (SUMO) solubility tag to an isotopically labeled protein. The method makes use of a newly developed SUMO-Sortase tagging reagent in which SUMO and the Sortase A (SrtA) enzyme are present within the same polypeptide. The SUMO-Sortase reagent rapidly attaches SUMO to any protein that contains the sequence LPXTG at its C-terminus. It modifies proteins at least 15-times faster than previously described approaches, and does not require active dialysis or centrifugation during the reaction to increase product yields. In addition, silently tagged proteins are readily purified using the well-established SUMO expression and purification system. The utility of the SUMO-Sortase tagging reagent is demonstrated using PhoP and green fluorescent proteins, which are ~90% modified with SUMO at room temperature within four hours. SrtA is widely used as a tool to construct bioconjugates. Significant rate enhancements in these procedures may also be achieved by fusing the sortase enzyme to its nucleophile substrate.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Aminoaciltransferasas/química , Proteínas Bacterianas/química , Cisteína Endopeptidasas/química , Proteínas Recombinantes de Fusión/química , Proteína SUMO-1/química , Solubilidad
20.
J Virol ; 89(23): 12058-69, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26401032

RESUMEN

UNLABELLED: Human immunodeficiency virus type 1 (HIV-1) replication requires reverse transcription of its RNA genome into a double-stranded cDNA copy, which is then integrated into the host cell chromosome. The essential steps of reverse transcription and integration are catalyzed by the viral enzymes reverse transcriptase (RT) and integrase (IN), respectively. In vitro, HIV-1 RT can bind with IN, and the C-terminal domain (CTD) of IN is necessary and sufficient for this binding. To better define the RT-IN interaction, we performed nuclear magnetic resonance (NMR) spectroscopy experiments to map a binding surface on the IN CTD in the presence of RT prebound to a duplex DNA construct that mimics the primer-binding site in the HIV-1 genome. To determine the biological significance of the RT-IN interaction during viral replication, we used the NMR chemical shift mapping information as a guide to introduce single amino acid substitutions of nine different residues on the putative RT-binding surface in the IN CTD. We found that six viral clones bearing such IN substitutions (R231E, W243E, G247E, A248E, V250E, and I251E) were noninfectious. Further analyses of the replication-defective IN mutants indicated that the block in replication took place specifically during early reverse transcription. The recombinant INs purified from these mutants, though retaining enzymatic activities, had diminished ability to bind RT in a cosedimentation assay. The results indicate that the RT-IN interaction is functionally relevant during the reverse transcription step of the HIV-1 life cycle. IMPORTANCE: To establish a productive infection, human immunodeficiency virus type 1 (HIV-1) needs to reverse transcribe its RNA genome to create a double-stranded DNA copy and then integrate this viral DNA genome into the chromosome of the host cell. These two essential steps are catalyzed by the HIV-1 enzymes reverse transcriptase (RT) and integrase (IN), respectively. We have shown previously that IN physically interacts with RT, but the importance of this interaction during HIV-1 replication has not been fully characterized. In this study, we have established the biological significance of the HIV-1 RT-IN interaction during the viral life cycle by demonstrating that altering the RT-binding surface on IN disrupts both reverse transcription and viral replication. These findings contribute to our understanding of the RT-IN binding mechanism, as well as indicate that the RT-IN interaction can be exploited as a new antiviral drug target.


Asunto(s)
Integrasa de VIH/metabolismo , Transcriptasa Inversa del VIH/metabolismo , VIH-1/fisiología , Transcripción Reversa/fisiología , Replicación Viral/fisiología , Sustitución de Aminoácidos/genética , Western Blotting , Cartilla de ADN/genética , Escherichia coli , Integrasa de VIH/genética , Transcriptasa Inversa del VIH/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA