Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2201483119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35930668

RESUMEN

The Jumonji domain-containing protein JMJD6 is a 2-oxoglutarate-dependent dioxygenase associated with a broad range of biological functions. Cellular studies have implicated the enzyme in chromatin biology, transcription, DNA repair, mRNA splicing, and cotranscriptional processing. Although not all studies agree, JMJD6 has been reported to catalyze both hydroxylation of lysine residues and demethylation of arginine residues. However, despite extensive study and indirect evidence for JMJD6 catalysis in many cellular processes, direct assignment of JMJD6 catalytic substrates has been limited. Examination of a reported site of proline hydroxylation within a lysine-rich region of the tandem bromodomain protein BRD4 led us to conclude that hydroxylation was in fact on lysine and catalyzed by JMJD6. This prompted a wider search for JMJD6-catalyzed protein modifications deploying mass spectrometric methods designed to improve the analysis of such lysine-rich regions. Using lysine derivatization with propionic anhydride to improve the analysis of tryptic peptides and nontryptic proteolysis, we report 150 sites of JMJD6-catalyzed lysine hydroxylation on 48 protein substrates, including 19 sites of hydroxylation on BRD4. Most hydroxylations were within lysine-rich regions that are predicted to be unstructured; in some, multiple modifications were observed on adjacent lysine residues. Almost all of the JMJD6 substrates defined in these studies have been associated with membraneless organelle formation. Given the reported roles of lysine-rich regions in subcellular partitioning by liquid-liquid phase separation, our findings raise the possibility that JMJD6 may play a role in regulating such processes in response to stresses, including hypoxia.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Histona Demetilasas con Dominio de Jumonji , Proteínas de Ciclo Celular/metabolismo , Humanos , Hidroxilación , Proteínas Intrínsecamente Desordenadas/metabolismo , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Dominios Proteicos , Factores de Transcripción/metabolismo
2.
J Biol Chem ; 298(6): 102020, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537551

RESUMEN

The aspariginyl hydroxylase human factor inhibiting hypoxia-inducible factor (FIH) is an important regulator of the transcriptional activity of hypoxia-inducible factor. FIH also catalyzes the hydroxylation of asparaginyl and other residues in ankyrin repeat domain-containing proteins, including apoptosis stimulating of p53 protein (ASPP) family members. ASPP2 is reported to undergo a single FIH-catalyzed hydroxylation at Asn-986. We report biochemical and crystallographic evidence showing that FIH catalyzes the unprecedented post-translational hydroxylation of both asparaginyl residues in "VNVN" and related motifs of ankyrin repeat domains in ASPPs (i.e., ASPP1, ASPP2, and iASPP) and the related ASB11 and p18-INK4C proteins. Our biochemical results extend the substrate scope of FIH catalysis and may have implications for its biological roles, including in the hypoxic response and ASPP family function.


Asunto(s)
Repetición de Anquirina , Oxigenasas de Función Mixta , Proteínas Represoras , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis , Catálisis , Humanos , Hidroxilación , Hipoxia , Oxigenasas de Función Mixta/metabolismo , Proteínas Represoras/metabolismo
3.
Mol Cell ; 53(4): 645-54, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24486019

RESUMEN

Efficient stop codon recognition and peptidyl-tRNA hydrolysis are essential in order to terminate translational elongation and maintain protein sequence fidelity. Eukaryotic translational termination is mediated by a release factor complex that includes eukaryotic release factor 1 (eRF1) and eRF3. The N terminus of eRF1 contains highly conserved sequence motifs that couple stop codon recognition at the ribosomal A site to peptidyl-tRNA hydrolysis. We reveal that Jumonji domain-containing 4 (Jmjd4), a 2-oxoglutarate- and Fe(II)-dependent oxygenase, catalyzes carbon 4 (C4) lysyl hydroxylation of eRF1. This posttranslational modification takes place at an invariant lysine within the eRF1 NIKS motif and is required for optimal translational termination efficiency. These findings further highlight the role of 2-oxoglutarate/Fe(II) oxygenases in fundamental cellular processes and provide additional evidence that ensuring fidelity of protein translation is a major role of hydroxylation.


Asunto(s)
Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Oxigenasas de Función Mixta/química , Terminación de la Cadena Péptídica Traduccional/genética , Factores de Terminación de Péptidos/química , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Animales , Catálisis , Línea Celular Tumoral , Codón de Terminación , Células HeLa , Humanos , Hidrólisis , Hidroxilación , Histona Demetilasas con Dominio de Jumonji , Modelos Moleculares , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
4.
EMBO Rep ; 20(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30429208

RESUMEN

Hypoxia-inducible factor (HIF) is the major transcriptional regulator of cellular responses to hypoxia. The two principal HIF-α isoforms, HIF-1α and HIF-2α, are progressively stabilized in response to hypoxia and form heterodimers with HIF-1ß to activate a broad range of transcriptional responses. Here, we report on the pan-genomic distribution of isoform-specific HIF binding in response to hypoxia of varying severity and duration, and in response to genetic ablation of each HIF-α isoform. Our findings reveal that, despite an identical consensus recognition sequence in DNA, each HIF heterodimer loads progressively at a distinct repertoire of cell-type-specific sites across the genome, with little evidence of redistribution under any of the conditions examined. Marked biases towards promoter-proximal binding of HIF-1 and promoter-distant binding of HIF-2 were observed under all conditions and were consistent in multiple cell type. The findings imply that each HIF isoform has an inherent property that determines its binding distribution across the genome, which might be exploited to therapeutically target the specific transcriptional output of each isoform independently.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia de la Célula/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Transcripción Genética , Línea Celular , Cromatina/genética , ADN/genética , Proteínas de Unión al ADN/genética , Epigenómica , Regulación de la Expresión Génica/genética , Humanos , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética
5.
Am J Hum Genet ; 100(3): 506-522, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28257692

RESUMEN

Ribosomal protein (RP) gene mutations, mostly associated with inherited or acquired bone marrow failure, are believed to drive disease by slowing the rate of protein synthesis. Here de novo missense mutations in the RPS23 gene, which codes for uS12, are reported in two unrelated individuals with microcephaly, hearing loss, and overlapping dysmorphic features. One individual additionally presents with intellectual disability and autism spectrum disorder. The amino acid substitutions lie in two highly conserved loop regions of uS12 with known roles in maintaining the accuracy of mRNA codon translation. Primary cells revealed one substitution severely impaired OGFOD1-dependent hydroxylation of a neighboring proline residue resulting in 40S ribosomal subunits that were blocked from polysome formation. The other disrupted a predicted pi-pi stacking interaction between two phenylalanine residues leading to a destabilized uS12 that was poorly tolerated in 40S subunit biogenesis. Despite no evidence of a reduction in the rate of mRNA translation, these uS12 variants impaired the accuracy of mRNA translation and rendered cells highly sensitive to oxidative stress. These discoveries describe a ribosomopathy linked to uS12 and reveal mechanistic distinctions between RP gene mutations driving hematopoietic disease and those resulting in developmental disorders.


Asunto(s)
Proteínas Ribosómicas/genética , Ribosomas/genética , Trastorno del Espectro Autista/genética , Proteínas Portadoras/genética , Células Cultivadas , Niño , Preescolar , Codón/genética , Discapacidades del Desarrollo/genética , Exoma , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Variación Genética , Pérdida Auditiva/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Mutación , Mutación Missense , Proteínas Nucleares/genética , Estrés Oxidativo , Biosíntesis de Proteínas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
6.
Nat Chem Biol ; 14(10): 988, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29950663

RESUMEN

In the version of this article initially published, authors Sarah E. Wilkins, Charlotte D. Eaton, Martine I. Abboud and Maximiliano J. Katz were incorrectly included in the equal contributions footnote in the affiliations list. Footnote number seven linking to the equal contributions statement should be present only for Suzana Markolovic and Qinqin Zhuang, and the statement should read "These authors contributed equally: Suzana Markolovic, Qinqin Zhuang." The error has been corrected in the HTML and PDF versions of the article.

7.
Nat Chem Biol ; 14(7): 688-695, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915238

RESUMEN

Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(II)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.


Asunto(s)
Biocatálisis , GTP Fosfohidrolasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , GTP Fosfohidrolasas/química , Humanos , Hidroxilación , Histona Demetilasas con Dominio de Jumonji/química , Modelos Moleculares
8.
Chemistry ; 25(8): 2019-2024, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30427558

RESUMEN

Human prolyl hydroxylases are involved in the modification of transcription factors, procollagen, and ribosomal proteins, and are current medicinal chemistry targets. To date, there are few reports on inhibitors selective for the different types of prolyl hydroxylases. We report a structurally informed template-based strategy for the development of inhibitors selective for the human ribosomal prolyl hydroxylase OGFOD1. These inhibitors did not target the other human oxygenases tested, including the structurally similar hypoxia-inducible transcription factor prolyl hydroxylase, PHD2.


Asunto(s)
Prolil Hidroxilasas , Inhibidores de Prolil-Hidroxilasa , Ribosomas/efectos de los fármacos , Proteínas Portadoras/antagonistas & inhibidores , Diseño de Fármacos , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Prolil Hidroxilasas/metabolismo , Inhibidores de Prolil-Hidroxilasa/química , Inhibidores de Prolil-Hidroxilasa/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Ribosomas/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Proc Natl Acad Sci U S A ; 111(11): 4019-24, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550462

RESUMEN

The mechanisms by which gene expression is regulated by oxygen are of considerable interest from basic science and therapeutic perspectives. Using mass spectrometric analyses of Saccharomyces cerevisiae ribosomes, we found that the amino acid residue in closest proximity to the decoding center, Pro-64 of the 40S subunit ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes posttranslational hydroxylation. We identify RPS23 hydroxylases as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglutarate dependent oxygenases; their catalytic domain is closely related to transcription factor prolyl trans-4-hydroxylases that act as oxygen sensors in the hypoxic response in animals. The RPS23 hydroxylases in S. cerevisiae (Tpa1p), Schizosaccharomyces pombe and green algae catalyze an unprecedented dihydroxylation modification. This observation contrasts with higher eukaryotes, where RPS23 is monohydroxylated; the human Tpa1p homolog OGFOD1 catalyzes prolyl trans-3-hydroxylation. TPA1 deletion modulates termination efficiency up to ∼10-fold, including of pathophysiologically relevant sequences; we reveal Rps23p hydroxylation as its molecular basis. In contrast to most previously characterized accuracy modulators, including antibiotics and the prion state of the S. cerevisiae translation termination factor eRF3, Rps23p hydroxylation can either increase or decrease translational accuracy in a stop codon context-dependent manner. We identify conditions where Rps23p hydroxylation status determines viability as a consequence of nonsense codon suppression. The results reveal a direct link between oxygenase catalysis and the regulation of gene expression at the translational level. They will also aid in the development of small molecules altering translational accuracy for the treatment of genetic diseases linked to nonsense mutations.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Ribosómicas/metabolismo , Ribosomas/fisiología , Chlorophyta , Codón de Terminación/genética , Humanos , Hidroxilación , Espectrometría de Masas , Oxigenasas/genética , Oxigenasas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae , Schizosaccharomyces , Especificidad de la Especie
11.
Proc Natl Acad Sci U S A ; 111(11): 4025-30, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550463

RESUMEN

Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2α and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Homeostasis/fisiología , Prolil Hidroxilasas/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas Ribosómicas/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Autofagia/genética , Western Blotting , Pesos y Medidas Corporales , Cromatografía Liquida , Cartilla de ADN/genética , Proteínas de Drosophila/genética , Cuerpo Adiposo/citología , Femenino , Técnicas de Silenciamiento del Gen , Hidroxilación , Prolil Hidroxilasas/genética , Procesamiento Proteico-Postraduccional/fisiología , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Ribosómicas/genética , Espectrometría de Masas en Tándem , Respuesta de Proteína Desplegada/genética
12.
Proc Natl Acad Sci U S A ; 111(11): 4031-6, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550447

RESUMEN

2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase domain-containing protein 1 (OGFOD1) is predicted to be a conserved 2OG oxygenase, the catalytic domain of which is related to hypoxia-inducible factor prolyl hydroxylases. OGFOD1 homologs in yeast are implicated in diverse cellular functions ranging from oxygen-dependent regulation of sterol response genes (Ofd1, Schizosaccharomyces pombe) to translation termination/mRNA polyadenylation (Tpa1p, Saccharomyces cerevisiae). However, neither the biochemical activity of OGFOD1 nor the identity of its substrate has been defined. Here we show that OGFOD1 is a prolyl hydroxylase that catalyzes the posttranslational hydroxylation of a highly conserved residue (Pro-62) in the small ribosomal protein S23 (RPS23). Unusually OGFOD1 retained a high affinity for, and forms a stable complex with, the hydroxylated RPS23 substrate. Knockdown or inactivation of OGFOD1 caused a cell type-dependent induction of stress granules, translational arrest, and growth impairment in a manner complemented by wild-type but not inactive OGFOD1. The work identifies a human prolyl hydroxylase with a role in translational regulation.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Nucleares/metabolismo , Prolil Hidroxilasas/metabolismo , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Ribosómicas/metabolismo , Análisis de Varianza , Proteínas Portadoras/genética , Biología Computacional , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Hidroxilación , Immunoblotting , Inmunoprecipitación , Ácidos Cetoglutáricos/metabolismo , Luciferasas , Proteínas Nucleares/genética , Prolina/metabolismo , Biosíntesis de Proteínas/genética , Levaduras
13.
Nat Chem Biol ; 8(12): 960-962, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23103944

RESUMEN

The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas/metabolismo , Células Procariotas/metabolismo , Ribosomas/metabolismo , Animales , Arginina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Dioxigenasas , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Histidina/metabolismo , Histona Demetilasas , Humanos , Hidroxilación , Espectroscopía de Resonancia Magnética , Oxigenasas de Función Mixta/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Oxigenasas/antagonistas & inhibidores , Proteínas Ribosómicas/metabolismo
14.
J Biol Chem ; 286(39): 33784-94, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21808058

RESUMEN

The asparaginyl hydroxylase, factor-inhibiting hypoxia-inducible factor (HIF), is central to the oxygen-sensing pathway that controls the activity of HIF. Factor-inhibiting HIF (FIH) also catalyzes the hydroxylation of a large set of proteins that share a structural motif termed the ankyrin repeat domain (ARD). In vitro studies have defined kinetic properties of FIH with respect to different substrates and have suggested FIH binds more tightly to certain ARD proteins than HIF and that ARD hydroxylation may have a lower K(m) value for oxygen than HIF hydroxylation. However, regulation of asparaginyl hydroxylation on ARD substrates has not been systematically studied in cells. To address these questions, we employed isotopic labeling and mass spectrometry to monitor the accrual, inhibition, and decay of hydroxylation under defined conditions. Under the conditions examined, hydroxylation was not reversed but increased as the protein aged. The extent of hydroxylation on ARD proteins was increased by addition of ascorbate, whereas iron and 2-oxoglutarate supplementation had no significant effect. Despite preferential binding of FIH to ARD substrates in vitro, when expressed as fusion proteins in cells, hydroxylation was found to be more complete on HIF polypeptides compared with sites within the ARD. Furthermore, comparative studies of hydroxylation in graded hypoxia revealed ARD hydroxylation was suppressed in a site-specific manner and was as sensitive as HIF to hypoxic inhibition. These findings suggest that asparaginyl hydroxylation of HIF-1 and ARD proteins is regulated by oxygen over a similar range, potentially tuning the HIF transcriptional response through competition between the two types of substrate.


Asunto(s)
Factor 1 Inducible por Hipoxia/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxígeno/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Animales , Repetición de Anquirina , Hipoxia de la Célula , Células HEK293 , Humanos , Hidroxilación , Factor 1 Inducible por Hipoxia/genética , Espectrometría de Masas , Ratones , Oxigenasas de Función Mixta/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/genética
15.
Cardiovasc Res ; 118(13): 2847-2858, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34668514

RESUMEN

AIMS: Prolyl hydroxylation is a post-translational modification that regulates protein stability, turnover, and activity. The proteins that catalyze prolyl hydroxylation belong to the 2-oxoglutarate- and iron-dependent oxygenase family of proteins. 2-oxoglutarate- and iron-dependent oxygenase domain-containing protein 1 (Ogfod1), which hydroxylates a proline in ribosomal protein s23 is a newly described member of this family. The aims of this study were to investigate roles for Ogfod1 in the heart, and in the heart's response to stress. METHODS AND RESULTS: We isolated hearts from wild-type (WT) and Ogfod1 knockout (KO) mice and performed quantitative proteomics using tandem mass Tag labelling coupled to liquid chromatography and tandem mass spectrometry (LC-MS/MS) to identify protein changes. Ingenuity pathway analysis identified 'Urate Biosynthesis/Inosine 5'-phosphate Degradation' and 'Purine Nucleotides Degradation II (Aerobic)' as the most significantly enriched pathways. We performed metabolomics analysis and found that both purine and pyrimidine pathways were altered with the purine nucleotide inosine 5'-monophosphate showing a 3.5-fold enrichment in KO hearts (P = 0.011) and the pyrimidine catabolism product beta-alanine showing a 1.7-fold enrichment in KO hearts (P = 0.014). As changes in these pathways have been shown to contribute to cardioprotection, we subjected isolated perfused hearts to ischaemia and reperfusion (I/R). KO hearts showed a 41.4% decrease in infarct size and a 34% improvement in cardiac function compared to WT hearts. This protection was also evident in an in vivo I/R model. Additionally, our data show that treating isolated perfused WT hearts with carnosine, a metabolite of beta-alanine, improved protection in the context of I/R injury, whereas treating KO hearts with carnosine had no impact on recovery of function or infarct size. CONCLUSIONS: Taken together, these data show that Ogfod1 deletion alters the myocardial proteome and metabolome to confer protection against I/R injury.


Asunto(s)
Carnosina , Proteínas Portadoras , Daño por Reperfusión Miocárdica , Proteínas Nucleares , Animales , Ratones , beta-Alanina/metabolismo , Carnosina/farmacología , Cromatografía Liquida , Infarto , Inosina , Hierro , Isquemia , Ácidos Cetoglutáricos , Ratones Noqueados , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Nucleótidos , Oxigenasas , Fosfatos , Prolina , Proteoma , Nucleótidos de Purina , Pirimidinas , Proteínas Ribosómicas , Espectrometría de Masas en Tándem , Ácido Úrico , Proteínas Nucleares/genética , Proteínas Portadoras/genética
16.
Mol Cell Proteomics ; 8(3): 535-46, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18936059

RESUMEN

Post-translational hydroxylation has been considered an unusual modification on intracellular proteins. However, following the recognition that oxygen-sensitive prolyl and asparaginyl hydroxylation are central to the regulation of the transcription factor hypoxia-inducible factor (HIF), interest has centered on the possibility that these enzymes may have other substrates in the proteome. In support of this certain ankyrin repeat domain (ARD)-containing proteins, including members of the IkappaB and Notch families, have been identified as alternative substrates of the HIF asparaginyl hydroxylase factor inhibiting HIF (FIH). Although these findings imply a potentially broad range of substrates for FIH, the precise extent of this range has been difficult to determine because of the difficulty of capturing transient enzyme-substrate interactions. Here we describe the use of pharmacological "substrate trapping" together with stable isotope labeling by amino acids in cell culture (SILAC) technology to stabilize and identify potential FIH-substrate interactions by mass spectrometry. To pursue these potential FIH substrates we used conventional data-directed tandem MS together with alternating low/high collision energy tandem MS to assign and quantitate hydroxylation at target asparaginyl residues. Overall the work has defined 13 new FIH-dependent hydroxylation sites with a degenerate consensus corresponding to that of the ankyrin repeat and a range of ARD-containing proteins as actual and potential substrates for FIH. Several ARD-containing proteins were multiply hydroxylated, and detailed studies of one, Tankyrase-2, revealed eight sites that were differentially sensitive to FIH-catalyzed hydroxylation. These findings indicate that asparaginyl hydroxylation is likely to be widespread among the approximately 300 ARD-containing species in the human proteome.


Asunto(s)
Repetición de Anquirina , Asparagina/metabolismo , Proteómica/métodos , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Aminoácidos Dicarboxílicos/farmacología , Línea Celular Tumoral , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Humanos , Hidroxilación/efectos de los fármacos , Immunoblotting , Espectrometría de Masas , Oxigenasas de Función Mixta , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Proteínas Represoras/química , Reproducibilidad de los Resultados , Especificidad por Sustrato/efectos de los fármacos , Tanquirasas/química , Tanquirasas/metabolismo
17.
Elife ; 82019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31500697

RESUMEN

Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.


Asunto(s)
Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Oxígeno/metabolismo , Proteínas Recombinantes/genética , Especificidad por Sustrato
18.
FEBS J ; 278(7): 1086-97, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21251231

RESUMEN

Factor-inhibiting hypoxia-inducible factor (FIH) is an Fe(II)/2-oxoglutarate-dependent dioxygenase that acts as a negative regulator of the hypoxia-inducible factor (HIF) by catalysing ß-hydroxylation of an asparaginyl residue in its C-terminal transcriptional activation domain (CAD). In addition to the hypoxia-inducible factor C-terminal transcriptional activation domain (HIF-CAD), FIH also catalyses asparaginyl hydroxylation of many ankyrin repeat domain-containing proteins, revealing a broad sequence selectivity. However, there are few reports on the selectivity of FIH for the hydroxylation of specific residues. Here, we report that histidinyl residues within the ankyrin repeat domain of tankyrase-2 can be hydroxylated by FIH. NMR and crystallographic analyses show that the histidinyl hydroxylation occurs at the ß-position. The results further expand the scope of FIH-catalysed hydroxylations.


Asunto(s)
Repetición de Anquirina/genética , Histidina/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Células HEK293 , Humanos , Hidroxilación , Espectrometría de Masas/métodos , Oxigenasas de Función Mixta , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Alineación de Secuencia , Tanquirasas/química , Tanquirasas/genética , Tanquirasas/metabolismo
20.
Ann N Y Acad Sci ; 1177: 9-18, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19845602

RESUMEN

Studies on hypoxia-sensitive pathways have identified a series of Fe(II)-dependent dioxygenases that regulate hypoxia-inducible factor (HIF) by prolyl and asparaginyl hydroxylation. The asparaginyl hydroxylase factor inhibiting HIF (FIH) targets a conserved asparaginyl residue in the C-terminal transactivation domain of HIF-alpha. This modification suppresses HIF transcriptional activity by inhibiting co-activator recruitment. Recent work has demonstrated that FIH targets an alternative class of substrate. Proteins containing a common interaction motif known as the ankyrin repeat domain (ARD) have been shown to be efficiently hydroxylated by FIH. This review aims to summarize what is currently known regarding ARD hydroxylation, including the kinetics and determinants of FIH-mediated ARD hydroxylation, the structural and functional consequences of ARD hydroxylation, and the potential for cross-talk between ARD proteins and HIF signaling.


Asunto(s)
Repetición de Anquirina , Proteínas/química , Proteínas/metabolismo , Proteínas Represoras/metabolismo , Animales , Asparagina/metabolismo , Humanos , Hidroxilación , Oxigenasas de Función Mixta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA