Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Anim Ecol ; 92(1): 97-111, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36321197

RESUMEN

Many migratory species are in decline across their geographical ranges. Single-population studies can provide important insights into drivers at a local scale, but effective conservation requires multi-population perspectives. This is challenging because relevant data are often hard to consolidate, and state-of-the-art analytical tools are typically tailored to specific datasets. We capitalized on a recent data harmonization initiative (SPI-Birds) and linked it to a generalized modelling framework to identify the demographic and environmental drivers of large-scale population decline in migratory pied flycatchers (Ficedula hypoleuca) breeding across Britain. We implemented a generalized integrated population model (IPM) to estimate age-specific vital rates, including their dependency on environmental conditions, and total and breeding population size of pied flycatchers using long-term (34-64 years) monitoring data from seven locations representative of the British breeding range. We then quantified the relative contributions of different vital rates and population structure to changes in short- and long-term population growth rate using transient life table response experiments (LTREs). Substantial covariation in population sizes across breeding locations suggested that change was the result of large-scale drivers. This was supported by LTRE analyses, which attributed past changes in short-term population growth rates and long-term population trends primarily to variation in annual survival and dispersal dynamics, which largely act during migration and/or nonbreeding season. Contributions of variation in local reproductive parameters were small in comparison, despite sensitivity to local temperature and rainfall within the breeding period. We show that both short- and long-term population changes of British breeding pied flycatchers are likely linked to factors acting during migration and in nonbreeding areas, where future research should be prioritized. We illustrate the potential of multi-population analyses for informing management at (inter)national scales and highlight the importance of data standardization, generalized and accessible analytical tools, and reproducible workflows to achieve them.


Asunto(s)
Pájaros Cantores , Animales , Dinámica Poblacional , Pájaros Cantores/fisiología , Estaciones del Año , Crecimiento Demográfico , Temperatura , Migración Animal
2.
Hum Mol Genet ; 28(11): 1865-1871, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689859

RESUMEN

Choroideremia (CHM) is an x-linked recessive chorioretinal dystrophy, with 30% caused by nonsense mutations in the CHM gene resulting in an in-frame premature termination codon (PTC). Nonsense-mediated mRNA decay (NMD) is the cell's natural surveillance mechanism that detects and destroys PTC-containing transcripts, with UPF1 being the central NMD modulator. NMD efficiency can be variable amongst individuals with some transcripts escaping destruction, leading to the production of a truncated non-functional or partially functional protein. Nonsense suppression drugs, such as ataluren, target these transcripts and read-through the PTC, leading to the production of a full length functional protein. Patients with higher transcript levels are considered to respond better to these drugs, as more substrate is available for read-through. Using Quantitative reverse transcription PCR (RT-qPCR), we show that CHM mRNA expression in blood from nonsense mutation CHM patients is 2.8-fold lower than controls, and varies widely amongst patients, with 40% variation between those carrying the same UGA mutation [c.715 C>T; p.(R239*)]. These results indicate that although NMD machinery is at work, efficiency is highly variable and not wholly dependent on mutation position. No significant difference in CHM mRNA levels was seen between two patients' fibroblasts and their induced pluripotent stem cell-derived retinal pigment epithelium. There was no correlation between CHM mRNA expression and genotype, phenotype or UPF1 transcript levels. NMD inhibition with caffeine was shown to restore CHM mRNA transcripts to near wild-type levels. Baseline mRNA levels may provide a prognostic indicator for response to nonsense suppression therapy, and caffeine may be a useful adjunct to enhance treatment efficacy where indicated.


Asunto(s)
Coroideremia/tratamiento farmacológico , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Helicasas/genética , ARN Mensajero/sangre , Transactivadores/genética , Cafeína/administración & dosificación , Coroideremia/sangre , Coroideremia/genética , Coroideremia/fisiopatología , Codón sin Sentido/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , Oxadiazoles/administración & dosificación , Fenotipo , Células Madre Pluripotentes/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo
3.
Lab Invest ; 99(10): 1547-1560, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31101854

RESUMEN

Diabetic retinopathy is the most common microvascular complication of diabetes and is a major cause of blindness, but an understanding of the pathogenesis of the disease has been hampered by a lack of accurate animal models. Here, we explore the dynamics of retinal cellular changes in the Nile rat (Arvicanthis niloticus), a carbohydrate-sensitive model for type 2 diabetes. The early retinal changes in diabetic Nile rats included increased acellular capillaries and loss of pericytes that correlated linearly with the duration of diabetes. These vascular changes occurred in the presence of microglial infiltration but in the absence of retinal ganglion cell loss. After a prolonged duration of diabetes, the Nile rat also exhibits a spectrum of retinal lesions commonly seen in the human condition including vascular leakage, capillary non-perfusion, and neovascularization. Our longitudinal study documents a range and progression of retinal lesions in the diabetic Nile rat remarkably similar to those observed in human diabetic retinopathy, and suggests that this model will be valuable in identifying new therapeutic strategies.


Asunto(s)
Capilares/patología , Retinopatía Diabética/patología , Retina/patología , Animales , Progresión de la Enfermedad , Edema/patología , Estudios Longitudinales , Murinae
4.
Hum Mol Genet ; 26(13): 2480-2492, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444310

RESUMEN

Ciliary trafficking defects are the underlying cause of many ciliopathies, including Retinitis Pigmentosa (RP). Anterograde intraflagellar transport (IFT) is mediated by kinesin motor proteins; however, the function of the homodimeric Kif17 motor in cilia is poorly understood, whereas Kif7 is known to play an important role in stabilizing cilia tips. Here we identified the ciliary tip kinesins Kif7 and Kif17 as novel interaction partners of the small GTPase Arl3 and its regulatory GTPase activating protein (GAP) Retinitis Pigmentosa 2 (RP2). We show that Arl3 and RP2 mediate the localization of GFP-Kif17 to the cilia tip and competitive binding of RP2 and Arl3 with Kif17 complexes. RP2 and Arl3 also interact with another ciliary tip kinesin, Kif7, which is a conserved regulator of Hedgehog (Hh) signaling. siRNA-mediated loss of RP2 or Arl3 reduced the level of Kif7 at the cilia tip. This was further validated by reduced levels of Kif7 at cilia tips detected in fibroblasts and induced pluripotent stem cell (iPSC) 3D optic cups derived from a patient carrying an RP2 nonsense mutation c.519C > T (p.R120X), which lack detectable RP2 protein. Translational read-through inducing drugs (TRIDs), such as PTC124, were able to restore Kif7 levels at the ciliary tip of RP2 null cells. Collectively, our findings suggest that RP2 and Arl3 regulate the trafficking of specific kinesins to cilia tips and provide additional evidence that TRIDs could be clinically beneficial for patients with this retinal degeneration.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas del Ojo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Ribosilacion-ADP/genética , Cilios/metabolismo , Proteínas del Ojo/genética , Proteínas de Unión al GTP , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de la Membrana/genética , Transporte de Proteínas , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo
6.
Hum Mol Genet ; 25(16): 3416-3431, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27329764

RESUMEN

Choroideremia (CHM) is an X-linked chorioretinal dystrophy that is caused by mutations within a single gene, CHM Currently no effective treatment exists for these patients. Since over 30% of patients harbour nonsense mutations in CHM, nonsense suppression therapy using translational readthrough inducing drugs may provide functional rescue of REP1, thus attenuating progressive sight loss. Here, we employed two CHM model systems to systematically test the efficacy and safety of ataluren (PTC124) and its novel analog PTC-414: (1) the chmru848 zebrafish, the only nonsense mutation animal model of CHM harbouring a TAA nonsense mutation, and (2) a primary human fibroblast cell line from a CHM patient harbouring a TAG nonsense mutation. PTC124 or PTC-414 treatment of chmru848 embryos led to a ∼2.0-fold increase in survival, prevented the onset of retinal degeneration with reduced oxidative stress and apoptosis, increased rep1 protein by 23.1% (PTC124) and 17.2% (PTC-414) and restored biochemical function as confirmed through in vitro prenylation assays (98 ± 2% [PTC124] and 68 ± 5% [PTC-414]). In CHMY42X/y fibroblasts, there was a recovery of prenylation activity following treatment with either PTC124 (42 ± 5%) or PTC-414 (36 ± 11%), although an increase in REP1 protein was not detected in these cells, in contrast to the zebrafish model. This comprehensive study on the use of PTC124 and PTC-414 as successful nonsense suppression agents for the treatment of CHM highlights the translational potential of these drugs for inherited retinal disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Coroideremia/tratamiento farmacológico , Degeneración Retiniana/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Coroideremia/genética , Coroideremia/patología , Codón sin Sentido , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Oxadiazoles/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Retina/efectos de los fármacos , Retina/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Pez Cebra , Proteínas de Pez Cebra
7.
Hum Mol Genet ; 24(4): 972-86, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25292197

RESUMEN

Mutations in the RP2 gene lead to a severe form of X-linked retinitis pigmentosa. RP2 patients frequently present with nonsense mutations and no treatments are currently available to restore RP2 function. In this study, we reprogrammed fibroblasts from an RP2 patient carrying the nonsense mutation c.519C>T (p.R120X) into induced pluripotent stem cells (iPSC), and differentiated these cells into retinal pigment epithelial cells (RPE) to study the mechanisms of disease and test potential therapies. RP2 protein was undetectable in the RP2 R120X patient cells, suggesting a disease mechanism caused by complete lack of RP2 protein. The RP2 patient fibroblasts and iPSC-derived RPE cells showed phenotypic defects in IFT20 localization, Golgi cohesion and Gß1 trafficking. These phenotypes were corrected by over-expressing GFP-tagged RP2. Using the translational read-through inducing drugs (TRIDs) G418 and PTC124 (Ataluren), we were able to restore up to 20% of endogenous, full-length RP2 protein in R120X cells. This level of restored RP2 was sufficient to reverse the cellular phenotypic defects observed in both the R120X patient fibroblasts and iPSC-RPE cells. This is the first proof-of-concept study to demonstrate successful read-through and restoration of RP2 function for the R120X nonsense mutation. The ability of the restored RP2 protein level to reverse the observed cellular phenotypes in cells lacking RP2 indicates that translational read-through could be clinically beneficial for patients.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas del Ojo/genética , Células Madre Pluripotentes Inducidas/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Mutación , Biosíntesis de Proteínas , Epitelio Pigmentado de la Retina/citología , Diferenciación Celular , Reprogramación Celular , Cilios/metabolismo , Cilios/patología , Proteínas del Ojo/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas de Unión al GTP , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Oxadiazoles/farmacología , Fenotipo , Biosíntesis de Proteínas/efectos de los fármacos , Transporte de Proteínas , Adulto Joven
8.
Hum Mol Genet ; 23(8): 2164-75, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24301679

RESUMEN

The molecular chaperone Hsp90 is important for the functional maturation of many client proteins, and inhibitors are in clinical trials for multiple indications in cancer. Hsp90 inhibition activates the heat shock response and can improve viability in a cell model of the P23H misfolding mutation in rhodopsin that causes autosomal dominant retinitis pigmentosa (adRP). Here, we show that a single low dose of the Hsp90 inhibitor HSP990 enhanced visual function and delayed photoreceptor degeneration in a P23H transgenic rat model. This was associated with the induction of heat shock protein expression and reduced rhodopsin aggregation. We then investigated the effect of Hsp90 inhibition on a different type of rod opsin mutant, R135L, which is hyperphosphorylated, binds arrestin and disrupts vesicular traffic. Hsp90 inhibition with 17-AAG reduced the intracellular accumulation of R135L and abolished arrestin binding in cells. Hsf-1(-/-) cells revealed that the effect of 17-AAG on P23H aggregation was dependent on HSF-1, whereas the effect on R135L was HSF-1 independent. Instead, the effect on R135L was mediated by a requirement of Hsp90 for rhodopsin kinase (GRK1) maturation and function. Importantly, Hsp90 inhibition restored R135L rod opsin localization to wild-type (WT) phenotype in vivo in rat retina. Prolonged Hsp90 inhibition with HSP990 in vivo led to a posttranslational reduction in GRK1 and phosphodiesterase (PDE6) protein levels, identifying them as Hsp90 clients. These data suggest that Hsp90 represents a potential therapeutic target for different types of rhodopsin adRP through distinct mechanisms, but also indicate that sustained Hsp90 inhibition might adversely affect visual function.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Mutación/genética , Piridonas/farmacología , Pirimidinas/farmacología , Retinitis Pigmentosa/prevención & control , Rodopsina/metabolismo , Animales , Western Blotting , Células Cultivadas , Electrorretinografía , Femenino , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Quinasa 1 del Receptor Acoplado a Proteína-G/metabolismo , Genes Dominantes , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rodopsina/genética , Tomografía de Coherencia Óptica , Visión Ocular/efectos de los fármacos , Visión Ocular/fisiología
9.
Development ; 140(12): 2576-85, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23715550

RESUMEN

Stem cell therapy for retinal disease is under way, and several clinical trials are currently recruiting. These trials use human embryonic, foetal and umbilical cord tissue-derived stem cells and bone marrow-derived stem cells to treat visual disorders such as age-related macular degeneration, Stargardt's disease and retinitis pigmentosa. Over a decade of analysing the developmental cues involved in retinal generation and stem cell biology, coupled with extensive surgical research, have yielded differing cellular approaches to tackle these retinopathies. Here, we review these various stem cell-based approaches for treating retinal diseases and discuss future directions and challenges for the field.


Asunto(s)
Células Madre Embrionarias/metabolismo , Degeneración Macular/terapia , Regeneración , Animales , Médula Ósea/metabolismo , Ensayos Clínicos como Asunto , Células Madre Embrionarias/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Degeneración Macular/congénito , Degeneración Macular/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Ratas , Retina/metabolismo , Retina/patología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/terapia , Trasplante de Células Madre/métodos
10.
Biochem Soc Trans ; 44(5): 1245-1251, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27911706

RESUMEN

The photoreceptor cells in the retina have a highly specialised sensory cilium, the outer segment (OS), which is important for detecting light. Mutations in cilia-related genes often result in retinal degeneration. The ability to reprogramme human cells into induced pluripotent stem cells and then differentiate them into a wide range of different cell types has revolutionised our ability to study human disease. To date, however, the challenge of producing fully differentiated photoreceptors in vitro has limited the application of this technology in studying retinal degeneration. In this review, we will discuss recent advances in stem cell technology and photoreceptor differentiation. In particular, the development of photoreceptors with rudimentary OS that can be used to understand disease mechanisms and as an important model to test potential new therapies for inherited retinal ciliopathies.


Asunto(s)
Ciliopatías/patología , Ciliopatías/terapia , Células Madre Pluripotentes Inducidas/citología , Retina/patología , Animales , Diferenciación Celular/genética , Células Cultivadas , Cilios/metabolismo , Cilios/patología , Ciliopatías/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Retina/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Degeneración Retiniana/terapia
11.
Anal Chem ; 87(1): 821-8, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25495696

RESUMEN

Affinity reagent pairs that recognize distinct epitopes on a target protein can greatly improve the sensitivity and specificity of molecular detection. Importantly, such pairs can be conjugated to generate reagents that achieve two-site "bidentate" target recognition, with affinities greatly exceeding either monovalent component. DNA aptamers are especially well-suited for such constructs, because they can be linked via standard synthesis techniques without requiring chemical conjugation. Unfortunately, aptamer pairs are difficult to generate, primarily because conventional selection methods preferentially yield aptamers that recognize a dominant "hot spot" epitope. Our array-based discovery platform for multivalent aptamers (AD-MAP) overcomes this problem to achieve efficient discovery of aptamer pairs. We use microfluidic selection and high-throughput sequencing to obtain an enriched pool of aptamer sequences. Next, we synthesize a custom array based on these sequences, and perform parallel affinity measurements to identify the highest-affinity aptamer for the target protein. We use this aptamer to form complexes that block the primary binding site on the target, and then screen the same array with these complexes to identify aptamers that bind secondary epitopes. We used AD-MAP to discover DNA aptamer pairs that bind distinct sites on human angiopoietin-2 with high affinities, even in undiluted serum. To the best of our knowledge, this is the first work to discover new aptamer pairs using arrays. We subsequently conjugated these aptamers with a flexible linker to construct ultra-high-affinity bidentate reagents, with equilibrium dissociation constants as low as 97 pM: >200-fold better than either component aptamer. Functional studies confirm that both aptamers critically contribute to this ultrahigh affinity, highlighting the promise of such reagents for research and clinical use.


Asunto(s)
Angiopoyetina 2/metabolismo , Aptámeros de Nucleótidos/metabolismo , Microfluídica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnica SELEX de Producción de Aptámeros/métodos , Angiopoyetina 2/genética , Aptámeros de Nucleótidos/química , Sitios de Unión , Fluorescencia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
13.
Diagnostics (Basel) ; 14(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786303

RESUMEN

(1) Background: We reviewed a stem cell-derived therapeutic strategy for advanced neovascular age-related macular degeneration (nAMD) using a human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) monolayer delivered on a coated, synthetic basement membrane (BM)-the patch-and assessed the presence and distribution of hESC-RPE over 5 years following transplantation, as well as functional outcomes. (2) Methods: Two subjects with acute vision loss due to sub-macular haemorrhage in advanced nAMD received the hESC-RPE patch. Systematic immunosuppression was used peri-operatively followed by local depot immunosuppression. The subjects were monitored for five years with observation of RPE patch pigmentation, extension beyond the patch boundary into surrounding retina, thickness of hESC-RPE and synthetic BM and review for migration and proliferation of hESC-RPE. Visual function was also assessed. (3) Results: The two study participants showed clear RPE characteristics of the patch, preservation of some retinal ultrastructure with signs of remodelling, fibrosis and thinning on optical coherence tomography over the 5-year period. For both participants, there was evidence of pigment extension beyond the patch continuing until 12 months post-operatively, which stabilised and was preserved until 5 years post-operatively. Measurement of hESC-RPE and BM thickness over time for both cases were consistent with predefined histological measurements of these two layers. There was no evidence of distant RPE migration or proliferation in either case beyond the monolayer. Sustained visual acuity improvement was apparent for 2 years in both subjects, with one subject maintaining the improvement for 5 years. Both subjects demonstrated initial improvement in fixation and microperimetry compared to baseline, at year 1, although only one maintained this at 4 years post-intervention. (4) Conclusions: hESC-RPE patches show evidence of continued pigmentation, with extension, to cover bare host basement membrane for up to 5 years post-implantation. There is evidence that this represents functional RPE on the patch and at the patch border where host RPE is absent. The measurements for thickness of hESC-RPE and BM suggest persistence of both layers at 5 years. No safety concerns were raised for the hypothetical risk of RPE migration, proliferation or tumour formation. Visual function also showed sustained improvement for 2 years in one subject and 5 years in the other subject.

14.
Sci Transl Med ; 16(750): eadi4125, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838135

RESUMEN

Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Ratones Noqueados , Estrés Oxidativo , Degeneración Retiniana , Epitelio Pigmentado de la Retina , Animales , Humanos , Masculino , Ratones , Senescencia Celular , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/genética , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología
15.
PLoS Biol ; 8(12): e1000558, 2010 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-21151887

RESUMEN

Photoreception in the mammalian retina is not restricted to rods and cones but extends to a subset of retinal ganglion cells expressing the photopigment melanopsin (mRGCs). These mRGCs are known to drive such reflex light responses as circadian photoentrainment and pupillomotor movements. By contrast, until now there has been no direct assessment of their contribution to conventional visual pathways. Here, we address this deficit. Using new reporter lines, we show that mRGC projections are much more extensive than previously thought and extend across the dorsal lateral geniculate nucleus (dLGN), origin of thalamo-cortical projection neurons. We continue to show that this input supports extensive physiological light responses in the dLGN and visual cortex in mice lacking rods+cones (a model of advanced retinal degeneration). Moreover, using chromatic stimuli to isolate melanopsin-derived responses in mice with an intact visual system, we reveal strong melanopsin input to the ∼40% of neurons in the LGN that show sustained activation to a light step. We demonstrate that this melanopsin input supports irradiance-dependent increases in the firing rate of these neurons. The implication that melanopsin is required to accurately encode stimulus irradiance is confirmed using melanopsin knockout mice. Our data establish melanopsin-based photoreception as a significant source of sensory input to the thalamo-cortical visual system, providing unique irradiance information and allowing visual responses to be retained even in the absence of rods+cones. These findings identify mRGCs as a potential origin for aspects of visual perception and indicate that they may support vision in people suffering retinal degeneration.


Asunto(s)
Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/fisiología , Tálamo/fisiología , Corteza Visual/fisiología , Animales , Modelos Animales de Enfermedad , Cuerpos Geniculados/anatomía & histología , Cuerpos Geniculados/fisiología , Ratones , Ratones Noqueados , Estimulación Luminosa , Células Fotorreceptoras de Vertebrados/fisiología , Degeneración Retiniana/fisiopatología , Células Ganglionares de la Retina/citología , Tálamo/anatomía & histología , Corteza Visual/anatomía & histología , Percepción Visual
16.
Front Epidemiol ; 3: 1066158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38455905

RESUMEN

War and conflict are global phenomena, identified as stress-inducing triggers for epigenetic modifications. In this state-of-the-science narrative review based on systematic principles, we summarise existing data to explore the outcomes of these exposures especially in veterans and show that they may result in an increased likelihood of developing gastrointestinal, auditory, metabolic and circadian issues, as well as post-traumatic stress disorder (PTSD). We also note that, despite a potential "healthy soldier effect", both veterans and civilians with PTSD exhibit the altered DNA methylation status in hypothalamic-pituitary-adrenal (HPA) axis regulatory genes such as NR3C1. Genes associated with sleep (PAX8; LHX1) are seen to be differentially methylated in veterans. A limited number of studies also revealed hereditary effects of war exposure across groups: decreased cortisol levels and a heightened (sex-linked) mortality risk in offspring. Future large-scale studies further identifying the heritable risks of war, as well as any potential differences between military and civilian populations, would be valuable to inform future healthcare directives.

17.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808640

RESUMEN

Unchecked, chronic inflammation is a constitutive component of age-related diseases, including age-related macular degeneration (AMD). Here we identified interleukin-1 receptor-associated kinase (IRAK)-M as a key immunoregulator in retinal pigment epithelium (RPE) that declines with age. Rare genetic variants of IRAK-M increased the likelihood of AMD. IRAK-M expression in RPE declined with age or oxidative stress and was further reduced in AMD. IRAK-M-deficient mice exhibited increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M disrupted RPE cell homeostasis, including compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of AAV-expressing IRAK-M rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in IRAK-M-deficient mice. Our data support that replenishment of IRAK-M expression may redress dysregulated pro-inflammatory processes in AMD, thereby treating degeneration.

18.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36121394

RESUMEN

Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKß/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKß/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKß is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKß signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKß is also required for efficient particle translocation from the cortex into the cell body in Fc receptor-mediated phagocytosis. Thus, conserved MRCKß signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.


Asunto(s)
Actomiosina , Proteína Quinasa de Distrofia Miotónica , Fagocitosis , Actinas/metabolismo , Actomiosina/metabolismo , Miosina Tipo II/metabolismo , Proteína Quinasa de Distrofia Miotónica/metabolismo , Fagocitosis/fisiología , Proteínas Tirosina Quinasas , Receptores Fc , Tirosina Quinasa c-Mer/metabolismo
19.
Stem Cell Reports ; 17(10): 2187-2202, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36084639

RESUMEN

Leber congenital amaurosis type 4 (LCA4), caused by AIPL1 mutations, is characterized by severe sight impairment in infancy and rapidly progressing degeneration of photoreceptor cells. We generated retinal organoids using induced pluripotent stem cells (iPSCs) from renal epithelial cells obtained from four children with AIPL1 nonsense mutations. iPSC-derived photoreceptors exhibited the molecular hallmarks of LCA4, including undetectable AIPL1 and rod cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE6) compared with control or CRISPR-corrected organoids. Increased levels of cGMP were detected. The translational readthrough-inducing drug (TRID) PTC124 was investigated as a potential therapeutic agent. LCA4 retinal organoids exhibited low levels of rescue of full-length AIPL1. However, this was insufficient to fully restore PDE6 in photoreceptors and reduce cGMP. LCA4 retinal organoids are a valuable platform for in vitro investigation of novel therapeutic agents.


Asunto(s)
Amaurosis Congénita de Leber , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Niño , Codón sin Sentido , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Guanosina Monofosfato , Humanos , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/terapia , Organoides/metabolismo , Oxadiazoles , Hidrolasas Diéster Fosfóricas/genética
20.
Retina ; 31(2): 371-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20921927

RESUMEN

PURPOSE: To investigate whether the Nidek MP1 microperimeter (NAVIS software Version 1.7; Nidek Technologies, Padua, Italy) can detect functional decline in progressive atrophic macular disease with stable visual acuity. METHODS: Nine eyes of nine patients with stable acuity but progressive inherited or age-related atrophic macular disease evident on fundus autofluorescence imaging were reviewed. Each patient underwent 3 consecutive microperimetry tests at baseline, 6 months, and 12 months. Acuity, fixation, and microperimetry tests were performed at each visit. Changes in acuity, fixation stability, and macular sensitivity were analyzed. To detect regional change in retinal sensitivity, the test grid was divided into clusters based on either topographical or functional features. The mean sensitivities within each zone were also compared across the three visits. RESULTS: In this cohort, there was no significant change in visual acuity, fixation stability, and macular sensitivity over 1 year. However, significant decline in mean sensitivity within the central macula and test loci adjacent to dense scotoma was found (P = 0.004 and 0.002, respectively). In contrast, mean sensitivity elsewhere remained stable. CONCLUSION: The MP1 can detect significant change in regional retinal sensitivity within 12 months in patients with progressive atrophic macular disease and stable acuity. Individualized analysis of regional sensitivity may be a useful method for quantifying microperimetry.


Asunto(s)
Enfermedades de la Retina/diagnóstico , Escotoma/diagnóstico , Agudeza Visual/fisiología , Pruebas del Campo Visual/métodos , Adulto , Anciano , Progresión de la Enfermedad , Femenino , Fijación Ocular/fisiología , Atrofia Geográfica/diagnóstico , Atrofia Geográfica/fisiopatología , Humanos , Degeneración Macular/diagnóstico , Degeneración Macular/fisiopatología , Masculino , Persona de Mediana Edad , Oftalmoscopía , Enfermedades de la Retina/fisiopatología , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/fisiopatología , Estudios Retrospectivos , Escotoma/fisiopatología , Campos Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA