Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 612(7939): 283-291, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477129

RESUMEN

Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11-19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.


Asunto(s)
ADN Ambiental , Ecosistema , Ecología , Fósiles , Groenlandia
2.
Nature ; 600(7887): 86-92, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34671161

RESUMEN

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Asunto(s)
Biota , ADN Antiguo/análisis , ADN Ambiental/análisis , Metagenómica , Animales , Regiones Árticas , Cambio Climático/historia , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Extinción Biológica , Sedimentos Geológicos , Pradera , Groenlandia , Haplotipos/genética , Herbivoria/genética , Historia Antigua , Humanos , Lagos , Mamuts , Mitocondrias/genética , Perisodáctilos , Hielos Perennes , Filogenia , Plantas/genética , Dinámica Poblacional , Lluvia , Siberia , Análisis Espacio-Temporal , Humedales
3.
Proc Natl Acad Sci U S A ; 119(35): e2204400119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994662

RESUMEN

Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families-grasses and legumes-accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas.


Asunto(s)
Dieta , Pradera , Herbivoria , Mamíferos , Plantas , África , Animales , Conducta Competitiva , Código de Barras del ADN Taxonómico , Dieta/estadística & datos numéricos , Dieta/veterinaria , Fabaceae/clasificación , Fabaceae/genética , Heces , Mamíferos/clasificación , Mamíferos/fisiología , Plantas/clasificación , Plantas/genética , Poaceae/clasificación , Poaceae/genética , Lluvia
4.
Mol Ecol ; : e17257, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38149334

RESUMEN

The question of how local adaptation takes place remains a fundamental question in evolutionary biology. The variation of allele frequencies in genes under selection over environmental gradients remains mainly theoretical and its empirical assessment would help understanding how adaptation happens over environmental clines. To bring new insights to this issue we set up a broad framework which aimed to compare the adaptive trajectories over environmental clines in two domesticated mammal species co-distributed in diversified landscapes. We sequenced the genomes of 160 sheep and 161 goats extensively managed along environmental gradients, including temperature, rainfall, seasonality and altitude, to identify genes and biological processes shaping local adaptation. Allele frequencies at putatively adaptive loci were rarely found to vary gradually along environmental gradients, but rather displayed a discontinuous shift at the extremities of environmental clines. Of the 430 candidate adaptive genes identified, only 6 were orthologous between sheep and goats and those responded differently to environmental pressures, suggesting different putative mechanisms involved in local adaptation in these two closely related species. Interestingly, the genomes of the 2 species were impacted differently by the environment, genes related to signatures of selection were most related to altitude, slope and rainfall seasonality for sheep, and summer temperature and spring rainfall for goats. The diversity of candidate adaptive pathways may result from a high number of biological functions involved in the adaptations to multiple eco-climatic gradients, and a differential role of climatic drivers on the two species, despite their co-distribution along the same environmental gradients. This study describes empirical examples of clinal variation in putatively adaptive alleles with different patterns in allele frequency distributions over continuous environmental gradients, thus showing the diversity of genetic responses in adaptive landscapes and opening new horizons for understanding genomics of adaptation in mammalian species and beyond.

8.
Mol Ecol ; 30(5): 1120-1135, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33432777

RESUMEN

High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Chipre , Genómica , Reproducibilidad de los Resultados
9.
Planta ; 252(5): 91, 2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33098500

RESUMEN

MAIN CONCLUSION: Bignoniaceae species have conserved chloroplast structure, with hotspots of nucleotide diversity. Several genes are under positive selection, and can be targets for evolutionary studies. Bignoniaceae is one of the most species-rich family of woody plants in Neotropical seasonally dry forests. Here we report the assembly of Handroanthus impetiginosus chloroplast genome and evolutionary comparative analyses of ten Bignoniaceae species representing the genera for which whole-genome chloroplast sequences were available. The chloroplast genome of H. impetiginosus is 159,462 bp in size and has a similar structure compared to the other nine species. The total number of genes was slightly variable amongst the Bignoniaceae, ranging from 124 in H. impetiginosus to 144 in Anemopaegma acutifolium. The inverted repeat (IR) size was variable, ranging from 24,657 bp (Tecomaria capensis) to 40,481 bp (A. acutifolium), due to the contraction and retraction at its boundaries. However, gene boundaries were very similar among the ten species. We found 98 forward and palindromic dispersed repeats, and 85 simple sequence repeats (SSRs). In general, chloroplast sequences were highly conserved, with few nucleotide diversity hotspots in the genes accD, clpP, rpoA, ycf1, ycf2. The phylogenetic analysis based on 77 coding genes was highly consistent with Angiosperm Phylogeny Group (APG) IV. Our results also indicate that most genes are under negative selection or neutral evolution. We found no evidence of branch-site selection, implying that H. impetiginosus is not evolving faster than the other species analyzed, notwithstanding we found site positive selection signal in several genes. These genes can provide targets for evolutionary studies in Bignoniaceae and Lamiales species.


Asunto(s)
Bignoniaceae , Evolución Molecular , Genoma del Cloroplasto , Tabebuia , Bignoniaceae/clasificación , Bignoniaceae/genética , Genoma del Cloroplasto/genética , Repeticiones de Microsatélite/genética , Filogenia , Tabebuia/clasificación , Tabebuia/genética
10.
Mol Ecol ; 29(16): 3144-3154, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32654383

RESUMEN

Knowledge of how animal species use food resources available in the environment can increase our understanding of many ecological processes. However, obtaining this information using traditional methods is difficult for species feeding on a large variety of food items in highly diverse environments. We amplified the DNA of plants for 306 scat and 40 soil samples, and applied an environmental DNA metabarcoding approach to investigate food preferences, degree of diet specialization and diet overlap of seven herbivore rodent species of the genus Ctenomys distributed in southern and midwestern Brazil. The metabarcoding approach revealed that these species consume more than 60% of the plant families recovered in soil samples, indicating generalist feeding habits of ctenomyids. The family Poaceae was the most common food resource retrieved in scats of all species as well in soil samples. Niche overlap analysis indicated high overlap in the plant families and molecular operational taxonomic units consumed, mainly among the southern species. Interspecific differences in diet composition were influenced, among other factors, by the availability of resources in the environment. In addition, our results provide support for the hypothesis that the allopatric distributions of ctenomyids allow them to exploit the same range of resources when available, possibly because of the absence of interspecific competition.


Asunto(s)
Código de Barras del ADN Taxonómico , Roedores , Animales , Brasil , Dieta , Herbivoria , Roedores/genética
11.
Nature ; 506(7486): 47-51, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24499916

RESUMEN

Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25-15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.


Asunto(s)
Biodiversidad , Dieta , Herbivoria , Nematodos , Plantas , Animales , Regiones Árticas , Bison/fisiología , Clima Frío , Congelación , Secuenciación de Nucleótidos de Alto Rendimiento , Caballos/fisiología , Mamuts/fisiología , Nematodos/clasificación , Nematodos/genética , Nematodos/aislamiento & purificación , Plantas/clasificación , Plantas/genética , Poaceae/genética , Poaceae/crecimiento & desarrollo , Suelo , Factores de Tiempo , El Yukón
12.
Mol Ecol ; 28(3): 528-543, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30375061

RESUMEN

Tropical forests shelter an unparalleled biological diversity. The relative influence of environmental selection (i.e., abiotic conditions, biotic interactions) and stochastic-distance-dependent neutral processes (i.e., demography, dispersal) in shaping communities has been extensively studied for various organisms, but has rarely been explored across a large range of body sizes, in particular in soil environments. We built a detailed census of the whole soil biota in a 12-ha tropical forest plot using soil DNA metabarcoding. We show that the distribution of 19 taxonomic groups (ranging from microbes to mesofauna) is primarily stochastic, suggesting that neutral processes are prominent drivers of the assembly of these communities at this scale. We also identify aluminium, topography and plant species identity as weak, yet significant drivers of soil richness and community composition of bacteria, protists and to a lesser extent fungi. Finally, we show that body size, which determines the scale at which an organism perceives its environment, predicted the community assembly across taxonomic groups, with soil mesofauna assemblages being more stochastic than microbial ones. These results suggest that the relative contribution of neutral processes and environmental selection to community assembly directly depends on body size. Body size is hence an important determinant of community assembly rules at the scale of the ecological community in tropical soils and should be accounted for in spatial models of tropical soil food webs.


Asunto(s)
Biodiversidad , Biota , Tamaño Corporal , Bosque Lluvioso , Clima Tropical , Animales , Bacterias , Código de Barras del ADN Taxonómico , Cadena Alimentaria , Guyana Francesa , Hongos , Plantas , Microbiología del Suelo
13.
Ecol Lett ; 21(11): 1660-1669, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30152092

RESUMEN

Investigating how trophic interactions influence the ß-diversity of meta-communities is of paramount importance to understanding the processes shaping biodiversity distribution. Here, we apply a statistical method for inferring the strength of spatial dependencies between pairs of species groups. Using simulated community data generated from a multi-trophic model, we showed that this method can approximate biotic interactions in multi-trophic communities based on ß-diversity patterns across groups. When applied to soil multi-trophic communities along an elevational gradient in the French Alps, we found that fungi make a major contribution to the structuring of ß-diversity across trophic groups. We also demonstrated that there were strong spatial dependencies between groups known to interact specifically (e.g. plant-symbiotic fungi, bacteria-nematodes) and that the influence of environment was less important than previously reported in the literature. Our method paves the way for a better understanding and mapping of multi-trophic communities through space and time.


Asunto(s)
Biodiversidad , Hongos , Bacterias , Suelo , Análisis Espacial
14.
Mol Biol Evol ; 34(3): 589-597, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28025274

RESUMEN

The higher termites (Termitidae) are keystone species and ecosystem engineers. They have exceptional biomass and play important roles in decomposition of dead plant matter, in soil manipulation, and as the primary food for many animals, especially in the tropics. Higher termites are most diverse in rainforests, with estimated origins in the late Eocene (∼54 Ma), postdating the breakup of Pangaea and Gondwana when most continents became separated. Since termites are poor fliers, their origin and spread across the globe requires alternative explanation. Here, we show that higher termites originated 42-54 Ma in Africa and subsequently underwent at least 24 dispersal events between the continents in two main periods. Using phylogenetic analyses of mitochondrial genomes from 415 species, including all higher termite taxonomic and feeding groups, we inferred 10 dispersal events to South America and Asia 35-23 Ma, coinciding with the sharp decrease in global temperature, sea level, and rainforest cover in the Oligocene. After global temperatures increased, 23-5 Ma, there was only one more dispersal to South America but 11 to Asia and Australia, and one dispersal back to Africa. Most of these dispersal events were transoceanic and might have occurred via floating logs. The spread of higher termites across oceans was helped by the novel ecological opportunities brought about by environmental and ecosystem change, and led termites to become one of the few insect groups with specialized mammal predators. This has parallels with modern invasive species that have been able to thrive in human-impacted ecosystems.


Asunto(s)
Isópteros/genética , Distribución Animal , Animales , ADN Mitocondrial/genética , Ecosistema , Genoma Mitocondrial , Especies Introducidas , Isópteros/crecimiento & desarrollo , Mitocondrias/genética , Filogenia , Filogeografía/métodos , Bosque Lluvioso
15.
Mol Ecol ; 32(19): 5448-5449, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37728013
16.
Oecologia ; 188(1): 107-115, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29961180

RESUMEN

Life history changes may change resource use. Such shifts are not well understood in the dung beetles, despite recognised differences in larval and adult feeding ability. We use the flightless dung beetle Circellium bacchus to explore such shifts, identifying dung sources of adults using DNA metabarcoding, and comparing these with published accounts of larval dung sources. C. bacchus is traditionally considered to specialise on the dung of large herbivores for both larval and adult feeding. We successfully extracted mammal DNA from 151 adult C. bacchus fecal samples, representing 16 mammal species (ranging from elephants to small rodents), many of which are hitherto undescribed in the diet. Adult C. bacchus showed clear dung source preferences, especially for large herbivores inhabiting dense-cover vegetation. Our approach also confirmed the presence of cryptic taxa in the study area, and we propose that this may be used for biodiversity survey and monitoring purposes. Murid rodent feces were the most commonly fed-upon dung source (77.5%) for adult C. bacchus, differing markedly from the large and megaherbivore dung sources used for larval rearing. These findings support the hypothesis of life history-specific shifts in resource use in dung beetles, and reveal a hitherto unsuspected, but ecologically important, role of these dung beetles in consuming rodent feces. The differences in feeding abilities of the larval and adult life history stages have profound consequences for their resource use and foraging strategies, and hence the ecological role of dung beetles. This principle and its ecological consequences should be explored in other scarabaeids.


Asunto(s)
Escarabajos , Animales , Biodiversidad , ADN , Dieta , Heces
17.
Mol Ecol ; 25(7): 1423-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26821259

RESUMEN

DNA barcoding has had a major impact on biodiversity science. The elegant simplicity of establishing massive scale databases for a few barcode loci is continuing to change our understanding of species diversity patterns, and continues to enhance human abilities to distinguish among species. Capitalizing on the developments of next generation sequencing technologies and decreasing costs of genome sequencing, there is now the opportunity for the DNA barcoding concept to be extended to new kinds of genomic data. We illustrate the benefits and capacity to do this, and also note the constraints and barriers to overcome before it is truly scalable. We advocate a twin track approach: (i) continuation and acceleration of global efforts to build the DNA barcode reference library of life on earth using standard DNA barcodes and (ii) active development and application of extended DNA barcodes using genome skimming to augment the standard barcoding approach.


Asunto(s)
Código de Barras del ADN Taxonómico , Genómica , Biodiversidad , Secuenciación de Nucleótidos de Alto Rendimiento , Plantas/clasificación
18.
Mol Ecol ; 25(4): 929-42, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26479867

RESUMEN

Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90-0.99) vs. 0.58 (CI = 0.50-0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA-based approach has the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.


Asunto(s)
Anfibios/clasificación , Biodiversidad , Código de Barras del ADN Taxonómico/métodos , Peces/clasificación , Anfibios/genética , Animales , Cartilla de ADN , ADN Mitocondrial/genética , Ecosistema , Monitoreo del Ambiente , Peces/genética , Agua Dulce , Océanos y Mares
19.
Ann Bot ; 118(5): 885-896, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27443299

RESUMEN

Background and Aims Plant plastid genomes are highly conserved in size, gene content and structure; however, parasitic plants are a noticeable exception to this evolutionary stability. Although the evolution of parasites could help to better understand plastome evolution in general, complete plastomes of parasites have been sequenced only for some lineages so far. Here we contribute to filling this gap by providing and analysing the complete plastome sequence of Cytinus hypocistis, the first parasite sequenced for Malvales and a species suspected to have an extremely small genome. Methods We sequenced and assembled de novo the plastid genome of Cytinus hypocistis using a shotgun approach on genomic DNA. Phylogenomic analyses based on coding regions were performed on Malvidae. For each coding region present in Cytinus, we tested for relaxation or intensification of selective pressures in the Cytinus lineage compared with autotrophic Malvales. Key Results Cytinus hypocistis has an extremely divergent genome that is among the smallest sequenced to date (19·4 kb), with only 23 genes and no inverted repeat regions. Phylogenomic analysis confirmed the position of Cytinus within Malvales. All coding regions of Cytinus plastome presented very high substitution rates compared with non-parasitic Malvales. Conclusions Some regions were inferred to be under relaxed negative selection in Cytinus, suggesting that further plastome reduction is occurring due to relaxed purifying selection associated with the loss of photosynthetic activity. On the other hand, increased selection intensity and strong positive selection were detected for rpl22 in the Cytinus lineage, which might indicate an evolutionary role in the host-parasite arms race, a point that needs further research.

20.
Am J Bot ; 103(6): 1089-102, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27329943

RESUMEN

PREMISE OF THE STUDY: The complex geological and climatic history of the Neotropics has had major implications on the diversification of plant lineages. Chrysobalanaceae is a pantropical family of trees and shrubs with 75% of its 531 species found in the Neotropics, and a time-calibrated phylogeny of this family should shed light on the tempo of diversification in the Neotropical flora. Previously published phylogenetic hypotheses of this family were poorly supported, and its biogeography remains unclear. METHODS: We assembled the complete plastid genome of 51 Chrysobalanaceae species, and increased taxon sampling by Sanger-sequencing of five plastid regions for an additional 88 species. We generated a time-calibrated tree including all 139 Chrsyobalanaceae species and 23 outgroups. We then conducted an ancestral area reconstruction analysis and estimated diversification rates in the family. KEY RESULTS: The tree generated with the plastid genome alignment was almost fully resolved. It supports the polyphyly of Licania and Hirtella. The family has diversified starting around the Eocene-Oligocene transition. An ancestral area reconstruction confirms a Paleotropical origin for Chrysobalanaceae with several transoceanic dispersal events. The main Neotropical clade likely resulted from a single migration event from Africa around 28 mya ago, which subsequently underwent rapid diversification. CONCLUSIONS: Given the diverse ecologies exhibited by extant species, we hypothesize that the rapid diversification of Chrysobalanaceae following the colonization of the Neotropics was triggered by habitat specialization during the complex geological and paleoclimatic history of the Neotropics.


Asunto(s)
Chrysobalanaceae/clasificación , Chrysobalanaceae/genética , Genoma de Plastidios , Filogeografía , Secuencia de Bases , Extinción Biológica , Especiación Genética , Variación Genética , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA