Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(37): E3900-9, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25197083

RESUMEN

In addition to members causing milder human infections, the Coronaviridae family includes potentially lethal zoonotic agents causing severe acute respiratory syndrome (SARS) and the recently emerged Middle East respiratory syndrome. The ∼30-kb positive-stranded RNA genome of coronaviruses encodes a replication/transcription machinery that is unusually complex and composed of 16 nonstructural proteins (nsps). SARS-CoV nsp12, the canonical RNA-dependent RNA polymerase (RdRp), exhibits poorly processive RNA synthesis in vitro, at odds with the efficient replication of a very large RNA genome in vivo. Here, we report that SARS-CoV nsp7 and nsp8 activate and confer processivity to the RNA-synthesizing activity of nsp12. Using biochemical assays and reverse genetics, the importance of conserved nsp7 and nsp8 residues was probed. Whereas several nsp7 mutations affected virus replication to a limited extent, the replacement of two nsp8 residues (P183 and R190) essential for interaction with nsp12 and a third (K58) critical for the interaction of the polymerase complex with RNA were all lethal to the virus. Without a loss of processivity, the nsp7/nsp8/nsp12 complex can associate with nsp14, a bifunctional enzyme bearing 3'-5' exoribonuclease and RNA cap N7-guanine methyltransferase activities involved in replication fidelity and 5'-RNA capping, respectively. The identification of this tripartite polymerase complex that in turn associates with the nsp14 proofreading enzyme sheds light on how coronaviruses assemble an RNA-synthesizing machinery to replicate the largest known RNA genomes. This protein complex is a fascinating example of the functional integration of RNA polymerase, capping, and proofreading activities.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Exorribonucleasas/metabolismo , Complejos Multiproteicos/metabolismo , Síndrome Respiratorio Agudo Grave/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas no Estructurales Virales/metabolismo , Secuencia de Bases , Biocatálisis , Humanos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , ARN/metabolismo , ARN Viral/biosíntesis , Reproducibilidad de los Resultados , Genética Inversa , Replicación Viral
2.
Nucleic Acids Res ; 42(18): 11642-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25209234

RESUMEN

Viral RNA-dependent RNA polymerases (RdRps) responsible for the replication of single-strand RNA virus genomes exert their function in the context of complex replication machineries. Within these replication complexes the polymerase activity is often highly regulated by RNA elements, proteins or other domains of multi-domain polymerases. Here, we present data of the influence of the methyltransferase domain (NS5-MTase) of dengue virus (DENV) protein NS5 on the RdRp activity of the polymerase domain (NS5-Pol). The steady-state polymerase activities of DENV-2 recombinant NS5 and NS5-Pol are compared using different biochemical assays allowing the dissection of the de novo initiation, transition and elongation steps of RNA synthesis. We show that NS5-MTase ensures efficient RdRp activity by stimulating the de novo initiation and the elongation phase. This stimulation is related to a higher affinity of NS5 toward the single-strand RNA template indicating NS5-MTase either completes a high-affinity RNA binding site and/or promotes the correct formation of the template tunnel. Furthermore, the NS5-MTase increases the affinity of the priming nucleotide ATP upon de novo initiation and causes a higher catalytic efficiency of the polymerase upon elongation. The complex stimulation pattern is discussed under the perspective that NS5 adopts several conformations during RNA synthesis.


Asunto(s)
ARN Polimerasa Dependiente del ARN/química , ARN/biosíntesis , Elongación de la Transcripción Genética , Iniciación de la Transcripción Genética , Proteínas no Estructurales Virales/química , Estructura Terciaria de Proteína , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo
4.
Nat Commun ; 6: 8749, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26549102

RESUMEN

The L protein of mononegaviruses harbours all catalytic activities for genome replication and transcription. It contains six conserved domains (CR-I to -VI; Fig. 1a). CR-III has been linked to polymerase and polyadenylation activity, CR-V to mRNA capping and CR-VI to cap methylation. However, how these activities are choreographed is poorly understood. Here we present the 2.2-Å X-ray structure and activities of CR-VI+, a portion of human Metapneumovirus L consisting of CR-VI and the poorly conserved region at its C terminus, the +domain. The CR-VI domain has a methyltransferase fold, which besides the typical S-adenosylmethionine-binding site ((SAM)P) also contains a novel pocket ((NS)P) that can accommodate a nucleoside. CR-VI lacks an obvious cap-binding site, and the (SAM)P-adjoining site holding the nucleotides undergoing methylation ((SUB)P) is unusually narrow because of the overhanging +domain. CR-VI+ sequentially methylates caps at their 2'O and N7 positions, and also displays nucleotide triphosphatase activity.


Asunto(s)
Metapneumovirus/metabolismo , Caperuzas de ARN/metabolismo , ARN/metabolismo , S-Adenosilmetionina/metabolismo , Animales , Sitios de Unión , Cromatografía en Capa Delgada , Cristalización , Cristalografía por Rayos X , Metilación , Mononegavirales/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Células Sf9 , Spodoptera , Proteínas Virales/química , Proteínas Virales/metabolismo
5.
Antiviral Res ; 101: 122-30, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24269475

RESUMEN

The SARS (severe acute respiratory syndrome) pandemic caused ten years ago by the SARS-coronavirus (SARS-CoV) has stimulated a number of studies on the molecular biology of coronaviruses. This research has provided significant new insight into many mechanisms used by the coronavirus replication-transcription complex (RTC). The RTC directs and coordinates processes in order to replicate and transcribe the coronavirus genome, a single-stranded, positive-sense RNA of outstanding length (∼27-32kilobases). Here, we review the up-to-date knowledge on SARS-CoV replicative enzymes encoded in the ORF1b, i.e., the main RNA-dependent RNA polymerase (nsp12), the helicase/triphosphatase (nsp13), two unusual ribonucleases (nsp14, nsp15) and RNA-cap methyltransferases (nsp14, nsp16). We also review how these enzymes co-operate with other viral co-factors (nsp7, nsp8, and nsp10) to regulate their activity. These last ten years of research on SARS-CoV have considerably contributed to unravel structural and functional details of one of the most fascinating replication/transcription machineries of the RNA virus world. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses".


Asunto(s)
Antivirales/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Humanos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasas/antagonistas & inhibidores , Ribonucleasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA