Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Bioorg Med Chem ; 28(3): 115260, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31870833

RESUMEN

Mitoxantrone is an anticancer anthracenedione that can be activated by formaldehyde to generate covalent drug-DNA adducts. Despite their covalent nature, these DNA lesions are relatively labile. It was recently established that analogues of mitoxantrone featuring extended side-chains terminating in primary amino groups typically yielded high levels of stable DNA adducts following their activation by formaldehyde. In this study we describe the DNA sequence-specific binding properties of the mitoxantrone analogue WEHI-150 which is the first anthracenedione to form apparent DNA crosslinks mediated by formaldehyde. The utility of this compound lies in the versatility of the covalent binding modes displayed. Unlike other anthracenediones described to date, WEHI-150 can mediate covalent adducts that are independent of interactions with the N-2 of guanine and is capable of adduct formation at novel DNA sequences. Moreover, these covalent adducts incorporate more than one formaldehyde-mediated bond with DNA, thus facilitating the formation of highly lethal DNA crosslinks. The versatility of binding observed is anticipated to allow the next generation of anthracenediones to interact with a broader spectrum of nucleic acid species than previously demonstrated by the parent compounds, thus allowing for more diverse biological activities.


Asunto(s)
ADN/efectos de los fármacos , Formaldehído/farmacología , Mitoxantrona/farmacología , Animales , Bovinos , Relación Dosis-Respuesta a Droga , Formaldehído/química , Espectrometría de Masas , Mitoxantrona/análogos & derivados , Mitoxantrona/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
2.
Org Biomol Chem ; 15(19): 4172-4179, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28443914

RESUMEN

The relatively non-toxic family of cucurbit[n]uril, Q[n], have shown considerable potential in vitro as drug delivery agents, with only a few examples of pharmacokinetic (PK) studies for drug⊂Q[n]. Drug-free Q[n] PK studies are the next step in determining the pharmacological applicability in their drug delivery potential. The results for the first PK and bio-distribution of drug-free 14C-Q[7] are described for administration via intravenous (i.v.) and intraperitoneal (i.p.) dosing. A study of oral administration of drug-free 14C-Q[8] has also been undertaken to determine the time course for the gastrointestinal tract (GIT), absorption and subsequent bio-distribution. Q[10], a potential drug carrier for larger drugs, was evaluated for its effect on the PK profile of a dinuclear ruthenium complex (Rubb12), a potential antimicrobial agent. The Rubb12⊂Q[10] complex and free Rubb12 were administered by i.v. to determine differences in Rubb12 plasma concentrations and organ accumulation. Interestingly, the PK profiles and bio-distribution observed for Q[7] showed similarities to those of Rubb12⊂Q[10]. Drug-free Q[7] has a relatively fast plasma clearance and a generally low organ accumulation except for the kidneys. Drug-free Q[8] showed a low absorption from the GIT into the blood stream but the small percentage absorbed reflected the organ accumulation of Q[7]. These results provide a better understanding of the probable PK profile and bio-distribution for a drug⊂Q[n] through the influence of the drug delivery vehicle and the positive clearance of drug-free Q[n] via the kidneys supports its potential value in future drug delivery applications.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacocinética , Imidazoles/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacocinética , Rutenio/química , Animales , Hidrocarburos Aromáticos con Puentes/química , Cápsulas , Ratones , Distribución Tisular
3.
J Am Chem Soc ; 138(46): 15267-15277, 2016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27786471

RESUMEN

Dinuclear polypyridylruthenium(II) complexes bridged by a flexible methylene linker have received considerable interest as potential antibacterial agents. Their potency and uptake into bacterial cells is directly modulated by the length of the bridging linker, which has implicated membrane interactions as an essential feature of their mechanism of action. In this work, a combination of molecular dynamics (MD) simulations and solid-state NMR was used to present an atomistic model of a polypyridylruthenium(II) complex bound and incorporated into a bacterial membrane model. The results of 31P, 2H, 1H, and 13C NMR studies revealed that the antibacterial [{Ru(phen)2}2(µ-bb12)]4+ complex (Rubb12), where phen = 1,10-phenanthroline and bb12 = bis[4(4'-methyl-2,2'-bipyridyl)]-1,12-dodecane), incorporated into a negatively charged model bacterial membrane, but only associated with the surface of a charge-neutral model of a eukaryotic membrane. Furthermore, an inactive [{Ir(phen)2}2(µ-bb12)]6+ (Irbb12) analogue, which is not taken up by bacterial cells, maintained only a surface-bound association with both bacterial and eukaryotic model membranes according to 31P and 2H NMR. The effects of Rubb12 on 31P chemical shift anisotropy and 2H acyl chain order parameters for negatively charged membranes correlated with a membrane-spanning state of the complex according to MD simulation-in which the metal centers embed in the lipid head group region and the central void, created by the biconic shape of the complex, resulting in increasing disorder of lipid acyl chains and membrane-thinning. A transbilayer mechanism and membrane-spanning may be essential for the cellular uptake and antibacterial activity of this class of compounds.


Asunto(s)
2,2'-Dipiridil/farmacología , Antibacterianos/farmacología , Simulación de Dinámica Molecular , Polímeros/farmacología , Rutenio/farmacología , Staphylococcus aureus/efectos de los fármacos , 2,2'-Dipiridil/química , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Muerte Celular/efectos de los fármacos , Línea Celular , Espectroscopía de Resonancia Magnética , Ratones , Pruebas de Sensibilidad Microbiana , Polímeros/síntesis química , Polímeros/química , Rutenio/química , Staphylococcus aureus/citología
4.
J Antimicrob Chemother ; 71(6): 1547-55, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26945708

RESUMEN

OBJECTIVES: The objectives of this study were to: (i) determine the in vitro activities of a series of di-, tri- and tetra-nuclear ruthenium complexes (Rubbn, Rubbn-tri and Rubbn-tetra) against a range of Gram-positive and -negative bacteria and compare the antimicrobial activities with the corresponding toxicities against eukaryotic cells; and (ii) compare MIC values with achievable in vivo serum concentrations for the least toxic ruthenium complex. METHODS: The in vitro activities were determined by MIC assays and time-kill curve experiments, while the toxicities of the ruthenium complexes were determined using the Alamar blue cytotoxicity assay. A preliminary pharmacokinetic study was undertaken to determine the Rubb12 serum concentration in mice as a function of time after administration. RESULTS: Rubb12, Rubb12-tri and Rubb12-tetra are highly active, with MIC values of 1-2 mg/L (0.5-1.5 µM) for a range of Gram-positive strains, but showed variable activities against a panel of Gram-negative bacteria. Time-kill experiments indicated that Rubb12, Rubb12-tri and Rubb12-tetra are bactericidal and kill bacteria within 3-8 h. The di-, tri- and tetra-nuclear complexes were ∼50 times more toxic to Gram-positive bacteria and 25 times more toxic to Gram-negative strains, classified as susceptible, than to liver and kidney cells. Preliminary pharmacokinetic experiments established that serum concentrations higher than MIC values can be obtained for Rubb12 with an administered dose of 32 mg/kg. CONCLUSIONS: The ruthenium complexes, particularly Rubb12, have potential as new antimicrobial agents. The structure of the dinuclear ruthenium complex can be readily further modified in order to increase the selectivity for bacteria over eukaryotic cells.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Células Eucariotas/efectos de los fármacos , Compuestos Organometálicos/farmacología , Rutenio/farmacología , Animales , Antibacterianos/farmacocinética , Antibacterianos/toxicidad , Supervivencia Celular/efectos de los fármacos , Colorimetría/métodos , Femenino , Masculino , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Compuestos Organometálicos/farmacocinética , Compuestos Organometálicos/toxicidad , Oxazinas/análisis , Rutenio/farmacocinética , Rutenio/toxicidad , Suero/química , Xantenos/análisis
5.
Org Biomol Chem ; 14(43): 10217-10221, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27735959

RESUMEN

The major covalent adduct formed between a 13C-labelled formaldehyde activated bis-amino mitoxantrone analogue (WEHI-150) and the hexanucleotide d(CG5MeCGCG)2 has been isolated by HPLC chromatography and the structure determined by NMR spectroscopy. The results indicate that WEHI-150 forms one covalent bond through a primary amine to the N-2 of the G2 residue, with the polycyclic ring structure intercalated at the 5MeC3pG4/G10p5MeC9 site. Furthermore, the WEHI-150 aromatic ring system is oriented approximately parallel to the long axis of the base pairs, with one aliphatic side-chain in the major groove and the other side-chain in the minor groove. This study indicates that mitoxantrone derivatives like WEHI-150 should be capable of forming major-minor groove cross-linked adducts that will likely produce considerably different intracellular biological properties compared to known anthracycline and anthracenedione anticancer drugs.


Asunto(s)
ADN/química , Mitoxantrona/química , Conformación de Ácido Nucleico , Modelos Moleculares , Oligonucleótidos/química
6.
Org Biomol Chem ; 14(20): 4728-38, 2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27142235

RESUMEN

The ability of a bis-amino mitoxantrone anticancer drug (named WEHI-150) to form covalent adducts with DNA, after activation by formaldehyde, has been studied by electrospray ionisation mass spectrometry and HPLC. Mass spectrometry results showed that WEHI-150 could form covalent adducts with d(ACGCGCGT)2 that contained one, two or three covalent links to the octanucleotide, whereas the control drugs (daunorubicin and the anthracenediones mitoxantrone and pixantrone) only formed adducts with one covalent link to the octanucleotide. HPLC was used to examine the extent of covalent bond formation of WEHI-150 with d(CGCGCG)2 and d(CG(5Me)CGCG)2. Incubation of WEHI-150 with d(CG(5Me)CGCG)2 in the presence of formaldehyde resulted in the formation of significantly greater amounts of covalent adducts than was observed with d(CGCGCG)2. In order to understand the observed increase of covalent adducts with d(CG(5Me)CGCG)2, an NMR study of the reversible interaction of WEHI-150 at both CpG and (5Me)CpG sites was undertaken. Intermolecular NOEs were observed in the NOESY spectra of d(ACGGCCGT)2 with added WEHI-150 that indicated that the drug selectively intercalated at the CpG sites and from the major groove. In particular, NOEs were observed from the WEHI-150 H2,3 protons to the H1' protons of G3 and G7 and from the H6,7 protons to the H5 protons of C2 and C6. By contrast, intermolecular NOEs were observed between the WEHI-150 H2,3 protons to the H2'' proton of the (5Me)C3 in d(CG(5Me)CGCG)2, and between the drug aliphatic protons and the H1' proton of G4. This demonstrated that WEHI-150 preferentially intercalates at (5Me)CpG sites, compared to CpG sequences, and predominantly via the minor groove at the (5Me)CpG site. The results of this study demonstrate that WEHI-150 is likely to form interstrand DNA cross-links, upon activation by formaldehyde, and consequently exhibit greater cytotoxicity than other current anthracenedione drugs.


Asunto(s)
ADN/química , Formaldehído/química , Mitoxantrona/química , Secuencia de Bases , Catálisis , ADN/genética , Modelos Moleculares , Conformación de Ácido Nucleico
7.
Chem Soc Rev ; 44(8): 2529-42, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25724019

RESUMEN

One of the major advances in medical science has been the development of antimicrobials; however, a consequence of their widespread use has been the emergence of drug-resistant populations of microorganisms. There is clearly a need for the development of new antimicrobials--but more importantly, there is the need for the development of new classes of antimicrobials, rather than drugs based upon analogues of known scaffolds. Due to the success of the platinum anticancer agents, there has been considerable interest in the development of therapeutic agents based upon other transition metals--and in particular ruthenium(II/III) complexes, due to their well known interaction with DNA. There have been many studies of the anticancer properties and cellular localisation of a range of ruthenium complexes in eukaryotic cells over the last decade. However, only very recently has there been significant interest in their antimicrobial properties. This review highlights the types of ruthenium complexes that have exhibited significant antimicrobial activity and discusses the relationship between chemical structure and biological processing--including site(s) of intracellular accumulation--of the ruthenium complexes in both bacterial and eukaryotic cells.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Rutenio/química , Rutenio/farmacología , Animales , Bacterias/citología , Bacterias/efectos de los fármacos , Humanos
8.
Chemistry ; 21(29): 10472-81, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26042390

RESUMEN

Ruthenium(II) complexes containing the tetradentate ligand bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane ("bbn "; n=10 and 12) have been synthesised and their geometric isomers separated. All [Ru(phen)(bbn )](2+) (phen=1,10-phenanthroline) complexes exhibited excellent activity against Gram-positive bacteria, but only the cis-α-[Ru(phen)(bb12 )](2+) species showed good activity against Gram-negative species. In particular, the cis-α-[Ru(phen)(bb12 )](2+) complex was two to four times more active than the cis-ß-[Ru(phen)(bb12 )](2+) complex against the Gram-negative strains. The cis-α- and cis-ß-[Ru(phen)(bb12 )](2+) complexes readily accumulated in the bacteria but, significantly, showed the highest level of uptake in Pseudomonas aeruginosa. Furthermore, the accumulation of the cis-α- and cis-ß-[Ru(phen)(bb12 )](2+) complexes in P. aeruginosa was considerably greater than in Escherichia coli. The uptake of the cis-α-[Ru(phen)(bb12 )](2+) complex into live P. aeruginosa was confirmed by using fluorescence microscopy. The water/octanol partition coefficients (log P) were determined to gain understanding of the relative cellular uptake. The cis-α- and cis-ß-[Ru(phen)(bbn )](2+) complexes exhibited relatively strong binding to DNA (Kb ≈10(6) M(-1) ), but no significant difference between the geometric isomers was observed.


Asunto(s)
ADN/química , Bacterias Gramnegativas/química , Bacterias Grampositivas/química , Compuestos Organometálicos/síntesis química , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Permeabilidad de la Membrana Celular , ADN/metabolismo , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Ligandos , Pruebas de Sensibilidad Microbiana , Compuestos Organometálicos/química , Rutenio/química
9.
Org Biomol Chem ; 13(21): 5972-82, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25929194

RESUMEN

The binding of the anti-cancer drug pixantrone to three oligonucleotide sequences, d(TCATATGA)2, d(CCGAGAATTCCGG)2 {double bulge = DB} and the non-self complementary d(TACGATGAGTA) : d(TACCATCGTA) {single bulge = SB}, has been studied by NMR spectroscopy and molecular modelling. The upfield shifts observed for the aromatic resonances of pixantrone upon addition of the drug to each oligonucleotide confirmed the drug bound by intercalation. For the duplex sequence d(TCATATGA)2, NOEs were observed from the pixantrone aromatic H7/8 and aliphatic Ha/Hb protons to the H6/H8 and H1' protons of the C2, A3, T6 and G7 nucleotides, demonstrating that pixantrone preferentially binds at the symmetric CpA sites. However, weaker NOEs observed to various protons from the T4 and A5 residues indicated alternative minor binding sites. NOEs from the H7/H8 and Ha/Hb protons to both major (H6/H8) and minor groove (H1') protons indicated approximately equal proportions of intercalation was from the major and minor groove at the CpA sites. Intermolecular NOEs were observed between the H7/H8 and H4 protons of pixantrone and the A4H1' and G3H1' protons of the oligonucleotide that contains two symmetrically related bulge sites (DB), indicative of binding at the adenine bulge sites. For the oligonucleotide that only contains a single bulge site (SB), NOEs were observed from pixantrone protons to the SB G7H1', A8H1' and G9H1' protons, confirming that the drug bound selectively at the adenine bulge site. A molecular model of pixantrone-bound SB could be constructed with the drug bound from the minor groove at the A8pG9 site that was consistent with the observed NMR data. The results demonstrate that pixantrone preferentially intercalates at adenine bulge sites, compared to duplex DNA, and predominantly from the minor groove.


Asunto(s)
Antineoplásicos/farmacología , ADN/química , Sustancias Intercalantes/farmacología , Isoquinolinas/farmacología , Secuencia de Bases , Sitios de Unión , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico
10.
Biomolecules ; 14(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38927067

RESUMEN

Selective staining of extracellular vesicles (EVs) is a major challenge for diagnostic and therapeutic applications. Herein, the EV labeling properties of a new class of tetranuclear polypyridylruthenium(II) complexes, Rubb7-TNL and Rubb7-TL, as phosphorescent stains are described. These new stains have many advantages over standard stains to detect and characterize EVs, including: high specificity for EV staining versus cell staining; high phosphorescence yields; photostability; and a lack of leaching from EVs until incorporation with target cells. As an example of their utility, large EVs released from control (basal) or lipopolysaccharide (LPS)-stimulated THP-1 monocytic leukemia cells were studied as a model of immune system EVs released during bacterial infection. Key findings from EV staining combined with flow cytometry were as follows: (i) LPS-stimulated THP-1 cells generated significantly larger and more numerous large EVs, as compared with those from unstimulated cells; (ii) EVs retained native EV physical properties after staining; and (iii) the new stains selectively differentiated intact large EVs from artificial liposomes, which are models of cell membrane fragments or other lipid-containing debris, as well as distinguished two distinct subpopulations of monocytic EVs within the same experiment, as a result of biochemical differences between unstimulated and LPS-stimulated monocytes. Comparatively, the staining patterns of A549 epithelial lung carcinoma-derived EVs closely resembled those of THP-1 cell line-derived EVs, which highlighted similarities in their selective staining despite their distinct cellular origins. This is consistent with the hypothesis that these new phosphorescent stains target RNA within the EVs.


Asunto(s)
Vesículas Extracelulares , Citometría de Flujo , Monocitos , Humanos , Vesículas Extracelulares/metabolismo , Citometría de Flujo/métodos , Monocitos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ácidos Nucleicos/metabolismo , Coloración y Etiquetado/métodos , Células THP-1 , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Lipopolisacáridos/farmacología , Línea Celular Tumoral , Células A549
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA