Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Cell Environ ; 45(9): 2682-2695, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35818668

RESUMEN

Plants are constantly exposed to environmental changes that affect their performance. Metabolic adjustments are crucial to controlling energy homoeostasis and plant survival, particularly during stress. Under carbon starvation, coordinated reprogramming is initiated to adjust metabolic processes, which culminate in premature senescence. Notwithstanding, the regulatory networks that modulate transcriptional control during low energy remain poorly understood. Here, we show that the WRKY45 transcription factor is highly induced during both developmental and dark-induced senescence. The overexpression of Arabidopsis WRKY45 resulted in an early senescence phenotype characterized by a reduction of maximum photochemical efficiency of photosystem II and chlorophyll levels in the later stages of darkness. The detailed metabolic characterization showed significant changes in amino acids coupled with the accumulation of organic acids in WRKY45 overexpression lines during dark-induced senescence. Furthermore, the markedly upregulation of alternative oxidase (AOX1a, AOX1d) and electron transfer flavoprotein/ubiquinone oxidoreductase (ETFQO) genes suggested that WRKY45 is associated with a dysregulation of mitochondrial signalling and the activation of alternative respiration rather than amino acids catabolism regulation. Collectively our results provided evidence that WRKY45 is involved in the plant metabolic reprogramming following carbon starvation and highlight the potential role of WRKY45 in the modulation of mitochondrial signalling pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbono/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Senescencia de la Planta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Plant Cell Rep ; 41(9): 1907-1929, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35833988

RESUMEN

KEY MESSAGE: High pigment mutants in tomato (Solanum lycopersicum L.), a loss of function in the control of photomorphogenesis, with greater pigment production, show altered growth, greater photosynthesis, and a metabolic reprogramming. High pigment mutations cause plants to be extremely responsive to light and produce excessive pigmentation as well as fruits with high levels of health-beneficial nutrients. However, the association of these traits with changes in the physiology and metabolism of leaves remains poorly understood. Here, we performed a detailed morphophysiological and metabolic characterization of high pigment 1 (hp1) and high pigment 2 (hp2) mutants in tomato (Solanum lycopersicum L. 'Micro-Tom') plants under different sunlight conditions (natural light, 50% shading, and 80% shading). These mutants occur in the DDB1 (hp1) and DET1 (hp2) genes, which are related to the regulation of photomorphogenesis and chloroplast development. Our results demonstrate that these mutations delay plant growth and height, by affecting physiological and metabolic parameters at all stages of plant development. Although the mutants were characterized by higher net CO2 assimilation, lower stomatal limitation, and higher carboxylation rates, with anatomical changes that favour photosynthesis, we found that carbohydrate levels did not increase, indicating a change in the energy flow. Shading minimized the differences between mutants and the wild type or fully reversed them in the phenotype at the metabolic level. Our results indicate that the high levels of pigments in hp1 and hp2 mutants represent an additional energy cost for these plants and that extensive physiological and metabolic reprogramming occurs to support increased pigment biosynthesis.


Asunto(s)
Solanum lycopersicum , Carbono/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Solanum lycopersicum/metabolismo , Fotosíntesis/genética , Pigmentación/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo
3.
Plant Cell Physiol ; 62(5): 798-814, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33693904

RESUMEN

In Arabidopsis thaliana, two genes encode the E2 subunit of the 2-oxoglutarate dehydrogenase (2-OGDH), a multimeric complex composed of three subunits. To functionally characterize the isoforms of E2 subunit, we isolated Arabidopsis mutant lines for each gene encoding the E2 subunit and performed a detailed molecular and physiological characterization of the plants under controlled growth conditions. The functional lack of expression of E2 subunit isoforms of 2-OGDH increased plant growth, reduced dark respiration and altered carbohydrate metabolism without changes in the photosynthetic rate. Interestingly, plants from e2-ogdh lines also exhibited reduced seed weight without alterations in total seed number. We additionally observed that downregulation of 2-OGDH activity led to minor changes in the levels of tricarboxylic acid cycle intermediates without clear correlation with the reduced expression of specific E2-OGDH isoforms. Furthermore, the e2-ogdh mutant lines exhibited a reduction by up to 25% in the leaf total amino acids without consistent changes in the amino acid profile. Taken together, our results indicate that the two isoforms of E2 subunit play a similar role in carbon-nitrogen metabolism, in plant growth and in seed weight.


Asunto(s)
Arabidopsis/fisiología , Carbono/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Nitrógeno/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Germinación , Complejo Cetoglutarato Deshidrogenasa/genética , Fotosíntesis , Filogenia , Subunidades de Proteína , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Semillas/enzimología , Semillas/crecimiento & desarrollo
4.
Planta ; 253(1): 16, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33392753

RESUMEN

MAIN CONCLUSION: Nitrogen promotes changes in SLA through metabolism and anatomical traits in Capsicum plants. Specific leaf area (SLA) is a key trait influencing light interception and light use efficiency that often impacts plant growth and production. SLA is a key trait explaining growth variations of plant species under different environments. Both light and nitrogen (N) supply are important determinants of SLA. To better understand the effect of irradiance level and N on SLA in Capsicum chinense, we evaluated primary metabolites and morphological traits of two commercial cultivars (Biquinho and Habanero) in response to changes in both parameters. Both genotypes showed increased SLA with shading, and a decrease in SLA in response to increased N supply, however, with Habanero showing a stable SLA in the range of N deficiency to sufficient N doses. Correlation analyses indicated that decreased SLA in response to higher N supply was mediated by altered amino acids, protein, and starch levels, influencing leaf density. Moreover, in the range of moderate N deficiency to N sufficiency, both genotypes exhibited differences in SLA response, with Biquinho and Habanero displaying alterations on palisade and spongy parenchyma, respectively. Altogether, the results suggest that SLA responses to N supply are modulated by the balance between certain metabolites content and genotype-dependent changes in the parenchyma cells influencing leaf thickness and density.


Asunto(s)
Capsicum , Células del Mesófilo , Nitrógeno , Hojas de la Planta , Capsicum/anatomía & histología , Capsicum/genética , Capsicum/metabolismo , Células del Mesófilo/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/anatomía & histología
5.
Sensors (Basel) ; 20(22)2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33202525

RESUMEN

Crop growth analysis is used for the assessment of crop yield potential and stress tolerance. Capturing continuous plant growth has been a goal since the early 20th century; however, this requires a large number of replicates and multiple destructive measurements. The use of machine vision techniques holds promise as a fast, reliable, and non-destructive method to analyze crop growth based on surrogates for plant traits and growth parameters. We used machine vision to infer plant size along with destructive measurements at multiple time points to analyze growth parameters of spring wheat genotypes. We measured side-projected area by machine vision and RGB imaging. Three traits, i.e., biomass (BIO), leaf dry weight (LDW), and leaf area (LA), were measured using low-throughput techniques. However, RGB imaging was used to produce side projected area (SPA) as the high throughput trait. Significant effects of time point and genotype on BIO, LDW, LA, and SPA were observed. SPA was a robust predictor of leaf area, leaf dry weight, and biomass. Relative growth rate estimated using SPA was a robust predictor of the relative growth rate measured using biomass and leaf dry weight. Large numbers of entries can be assessed by this method for genetic mapping projects to produce a continuous growth curve with fewer replicates.


Asunto(s)
Dispositivos Ópticos , Hojas de la Planta/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Biomasa , Genotipo , Fenotipo , Triticum/genética
6.
Plant Mol Biol ; 101(1-2): 183-202, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31286324

RESUMEN

KEY MESSAGE: Isoforms of 2-OGDH E1 subunit are not functionally redundant in plant growth and development of A. thaliana. The tricarboxylic acid cycle enzyme 2-oxoglutarate dehydrogenase (2-OGDH) converts 2-oxoglutarate (2-OG) to succinyl-CoA concomitant with the reduction of NAD+. 2-OGDH has an essential role in plant metabolism, being both a limiting step during mitochondrial respiration as well as a key player in carbon-nitrogen interactions. In Arabidopsis thaliana two genes encode for E1 subunit of 2-OGDH but the physiological roles of each isoform remain unknown. Thus, in the present study we isolated Arabidopsis T-DNA insertion knockout mutant lines for each of the genes encoding the E1 subunit of 2-OGDH enzyme. All mutant plants exhibited substantial reduction in both respiration and CO2 assimilation rates. Furthermore, mutant lines exhibited reduced levels of chlorophylls and nitrate, increased levels of sucrose, malate and fumarate and minor changes in total protein and starch levels in leaves. Despite the similar metabolic phenotypes for the two E1 isoforms the reduction in the expression of each gene culminated in different responses in terms of plant growth and seed production indicating distinct roles for each isoform. Collectively, our results demonstrated the importance of the E1 subunit of 2-OGDH in both autotrophic and heterotrophic tissues and suggest that the two E1 isoforms are not functionally redundant in terms of plant growth in A. thaliana.


Asunto(s)
Arabidopsis/enzimología , Carbono/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Nitrógeno/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Complejo Cetoglutarato Deshidrogenasa/genética , Mitocondrias/enzimología , Mutagénesis Insercional , Nitratos/metabolismo , Fenotipo , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Isoformas de Proteínas , Subunidades de Proteína , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/enzimología , Semillas/genética , Semillas/crecimiento & desarrollo
7.
Plant Cell Physiol ; 60(1): 213-229, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30329109

RESUMEN

Thioredoxins (Trxs) modulate metabolic responses during stress conditions; however, the mechanisms governing the responses of plants subjected to multiple drought events and the role of Trxs under these conditions are not well understood. Here we explored the significance of the mitochondrial Trx system in Arabidopsis following exposure to single and repeated drought events. We analyzed the previously characterized NADPH-dependent Trx reductase A and B double mutant (ntra ntrb) and two independent mitochondrial thioredoxin o1 (trxo1) mutant lines. Following similar reductions in relative water content (∼50%), Trx mutants subjected to two drought cycles displayed a significantly higher maximum quantum efficiency (Fv/Fm) and were less sensitive to drought than their wild-type counterparts and than all genotypes subjected to a single drought event. Trx mutant plants displayed a faster recovery after two cycles of drought, as observed by the higher accumulation of secondary metabolites and higher stomatal conductance. Our results indicate that plants exposed to multiple drought cycles are able to modulate their subsequent metabolic and physiological response, suggesting the occurrence of an exquisite acclimation in stressed Arabidopsis plants. Moreover, this differential acclimation involves the participation of a set of metabolic changes as well as redox poise alteration following stress recovery.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sequías , Mitocondrias/metabolismo , Tiorredoxinas/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Metaboloma , Mutación/genética , Nucleótidos/metabolismo , Oxidación-Reducción , Estomas de Plantas/fisiología , Análisis de Componente Principal , Estrés Fisiológico , Agua
8.
Plant Cell Physiol ; 60(10): 2319-2330, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268146

RESUMEN

Fruit set is an important yield-related parameter, which varies drastically due to genetic and environmental factors. Here, two commercial cultivars of Capsicum chinense (Biquinho and Habanero) were evaluated in response to light intensity (unshaded and shaded) and N supply (deficiency and sufficiency) to understand the role of source strength on fruit set at the metabolic level. We assessed the metabolic balance of primary metabolites in source leaves during the flowering period. Furthermore, we investigated the metabolic balance of the same metabolites in flowers to gain more insights into their influence on fruit set. Genotype and N supply had a strong effect on fruit set and the levels of primary metabolites, whereas light intensity had a moderate effect. Higher fruit set was mainly related to the export of both sucrose and amino acids from source leaves to flowers. Additionally, starch turnover in source leaves, but not in flowers, had a central role on the sucrose supply to sink organs at night. In flowers, our results not only confirmed the role of the daily supply of carbohydrates on fruit set but also indicated a potential role of the balance of amino acids and malate.


Asunto(s)
Aminoácidos/metabolismo , Capsicum/fisiología , Nitrógeno/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Biomasa , Capsicum/genética , Capsicum/crecimiento & desarrollo , Capsicum/efectos de la radiación , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Flores/efectos de la radiación , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Frutas/efectos de la radiación , Genotipo , Luz , Malatos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
9.
Plant Biotechnol J ; 13(9): 1300-1311, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25688422

RESUMEN

Begomovirus-associated epidemics currently threaten tomato production worldwide due to the emergence of highly pathogenic virus species and the proliferation of a whitefly B biotype vector that is adapted to tomato. To generate an efficient defence against begomovirus, we modulated the activity of the immune defence receptor nuclear shuttle protein (NSP)-interacting kinase (NIK) in tomato plants; NIK is a virulence target of the begomovirus NSP during infection. Mutation of T474 within the kinase activation loop promoted the constitutive activation of NIK-mediated defences, resulting in the down-regulation of translation-related genes and the suppression of global translation. Consistent with these findings, transgenic lines harbouring an activating mutation (T474D) were tolerant to the tomato-infecting begomoviruses ToYSV and ToSRV. This phenotype was associated with reduced loading of coat protein viral mRNA in actively translating polysomes, lower infection efficiency and reduced accumulation of viral DNA in systemic leaves. Our results also add some relevant insights into the mechanism underlying the NIK-mediated defence. We observed that the mock-inoculated T474D-overexpressing lines showed a constitutively infected wild-type transcriptome, indicating that the activation of the NIK-mediated signalling pathway triggers a typical response to begomovirus infection. In addition, the gain-of-function mutant T474D could sustain an activated NIK-mediated antiviral response in the absence of the virus, further confirming that phosphorylation of Thr-474 is the crucial event that leads to the activation of the kinase.


Asunto(s)
Begomovirus/fisiología , Enfermedades de las Plantas/virología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Solanum lycopersicum/virología , Genes de Plantas , Solanum lycopersicum/fisiología , Mutación , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Transducción de Señal/genética , Proteínas Virales/metabolismo
10.
J Plant Physiol ; 293: 154170, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38271894

RESUMEN

Although significant efforts to produce carotenoid-enriched foods either by biotechnology or traditional breeding strategies have been carried out, our understanding of how changes in the carotenoid biosynthesis might affect overall plant performance remains limited. Here, we investigate how the metabolic machinery of well characterized tomato carotenoid mutant plants [namely crimson (old gold-og), Delta carotene (Del) and tangerine (t)] adjusts itself to varying carotenoid biosynthesis and whether these adjustments are supported by a reprogramming of photosynthetic and central metabolism in the source organs (leaves). We observed that mutations og, Del and t did not greatly affect vegetative growth, leaf anatomy and gas exchange parameters. However, an exquisite metabolic reprogramming was recorded on the leaves, with an increase in levels of amino acids and reduction of organic acids. Taken together, our results show that despite minor impacts on growth and gas exchange, carbon flux is extensively affected, leading to adjustments in tomato leaves metabolism to support changes in carotenoid biosynthesis on fruits (sinks). We discuss these data in the context of our current understanding of metabolic adjustments and carotenoid biosynthesis as well as regarding to improving human nutrition.


Asunto(s)
Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Frutas/metabolismo , Reprogramación Metabólica , Carotenoides/metabolismo , Plantas/metabolismo , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
Plant Sci ; 283: 224-237, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31128692

RESUMEN

Yield-related traits of Capsicum chinense are highly dependent on coordination between vegetative and reproductive growth, since the formation of reproductive tissues occurs iteratively in new sympodial bifurcations. In this study, we used two C. chinense cultivars (Biquinho and Habanero), contrasting for fruit size and fruit set, to investigate the responses of nitrogen (N) deficiency and excess on growth, photosynthesis, carbon (C) and N metabolisms as well as yield-related traits. Both cultivars increased biomass allocation to leaves in conditions of higher N supply and exhibited a parabolic behavior for fruit biomass allocation. Plants growing under N-deficiency produced a lower number of flowers and heavier fruits. Contrarily, plants under high N condition tended to decrease their CO2 assimilation rate, harvest index and fruit weight. Biquinho, the cultivar with lower fruit size and higher fruit set, was initially less affected by excess of N due to its continuous formation of new reproductive sinks in relation to Habanero (which has lower fruit set and higher fruit size). The results suggest that N amount influences sucrose supply to different organs and can differentially affect yield-related traits between Capsicum cultivars with contrasting source-sink relations.


Asunto(s)
Capsicum/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Compuestos de Amonio/metabolismo , Capsicum/crecimiento & desarrollo , Capsicum/fisiología , Frutas/crecimiento & desarrollo , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA