Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(4): 784-799.e19, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32413299

RESUMEN

Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.


Asunto(s)
Acuaporina 4/metabolismo , Edema/metabolismo , Edema/terapia , Animales , Acuaporina 4/fisiología , Astrocitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Calmodulina/metabolismo , Sistema Nervioso Central/metabolismo , Edema/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Trifluoperazina/farmacología
2.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934923

RESUMEN

Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury. The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression systems. The inherent variability within these methods has caused discrepancy and many molecules that are inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound, TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet clinical need.


Asunto(s)
Acuaporinas/antagonistas & inhibidores , Mamíferos/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/farmacología , Acuaporinas/química , Acuaporinas/metabolismo , Bioensayo , Ensayos Clínicos como Asunto , Humanos , Patentes como Asunto
3.
J Biol Chem ; 291(13): 6858-71, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26786101

RESUMEN

The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family.


Asunto(s)
Acuaporina 1/química , Acuaporina 3/química , Acuaporina 4/química , Agua/química , Secuencia de Aminoácidos , Animales , Acuaporina 1/genética , Acuaporina 1/metabolismo , Acuaporina 3/genética , Acuaporina 3/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Perros , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Células HEK293 , Humanos , Enlace de Hidrógeno , Células de Riñón Canino Madin Darby , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación , Concentración Osmolar , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Agua/metabolismo
4.
Eur J Neurosci ; 46(9): 2542-2547, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28925524

RESUMEN

Human aquaporin 4 (AQP4) is the primary water channel protein in brain astrocytes. Hypothermia is known to cause astrocyte swelling in culture, but the precise role of AQP4 in this process is unknown. Primary human cortical astrocytes were cultured under hypothermic (32 °C) or normothermic (37 °C) conditions. AQP4 transcript, total protein and surface-localized protein were quantified using RT-qPCR, sandwich ELISA with whole cell lysates or cell surface biotinylation, followed by ELISA analysis of the surface-localized protein, respectively. Four-hour mild hypothermic treatment increased the surface localization of AQP4 in human astrocytes to 155 ± 4% of normothermic controls, despite no change in total protein expression levels. The hypothermia-mediated increase in AQP4 surface abundance on human astrocytes was blocked using either calmodulin antagonist (trifluoperazine, TFP); TRPV4 antagonist, HC-067047 or calcium chelation using EGTA-AM. The TRPV4 agonist (GSK1016790A) mimicked the effect of hypothermia compared with untreated normothermic astrocytes. Hypothermia led to an increase in surface localization of AQP4 in human astrocytes through a mechanism likely dependent on the TRPV4 calcium channel and calmodulin activation. Understanding the effects of hypothermia on astrocytic AQP4 cell surface expression may help develop new treatments for brain swelling based on an in-depth mechanistic understanding of AQP4 translocation.


Asunto(s)
Acuaporina 4/metabolismo , Astrocitos/metabolismo , Calmodulina/metabolismo , Corteza Cerebral/metabolismo , Hipotermia/metabolismo , Canales Catiónicos TRPV/metabolismo , Acuaporina 4/antagonistas & inhibidores , Astrocitos/efectos de los fármacos , Astrocitos/patología , Calcio/metabolismo , Calmodulina/antagonistas & inhibidores , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/patología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Humanos , Hipotermia/patología , Hipotermia Inducida , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , ARN Mensajero/metabolismo , Canales Catiónicos TRPV/agonistas
5.
Eur J Neurosci ; 46(5): 2121-2132, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28715131

RESUMEN

Epilepsies are common disorders of the central nervous system (CNS), affecting up to 2% of the global population. Pharmaco-resistance is a major clinical challenge affecting about 30% of temporal lobe epilepsy (TLE) patients. Water homeostasis has been shown crucial for regulation of neuronal excitability. The control of water movement is achieved through a family of small integral membrane channel proteins called aquaporins (AQPs). Despite the fact that changes in water homeostasis occur in sclerotic hippocampi of people with TLE, the expression of AQPs in the epileptic brain is not fully characterised. This study uses microarray and ELISA methods to analyse the mRNA and protein expression of the human cerebral AQPs in sclerotic hippocampi (TLE-HS) and adjacent neocortex tissue (TLE-NC) of TLE patients. The expression of AQP1 and AQP4 transcripts was significantly increased, while that of the AQP9 transcript was significantly reduced in TLE-HS compared to TLE-NC. AQP4 protein expression was also increased while expression of AQP1 protein remained unchanged, and AQP9 was undetected. Microarray data analysis identified 3333 differentially regulated genes and suggested the involvement of the MAPK signalling pathway in TLE pathogenesis. Proteome array data validated the translational profile for 26 genes and within the MAPK pathway (e.g. p38, JNK) that were identified as differentially expressed from microarray analysis. ELISA data showed that p38 and JNK inhibitors decrease AQP4 protein levels in cultured human primary cortical astrocytes. Elucidating the mechanism of selective regulation of different AQPs and associated regulatory proteins may provide a new therapeutic approach to epilepsy treatment.


Asunto(s)
Acuaporinas/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas , Neocórtex/metabolismo , Transcriptoma , Adulto , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Persona de Mediana Edad , Proteoma , ARN Mensajero/metabolismo , Esclerosis/metabolismo , Esclerosis/cirugía , Adulto Joven
6.
J Biol Chem ; 290(27): 16873-81, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26013827

RESUMEN

The aquaporin family of integral membrane proteins is composed of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves PKA activation, influx of extracellular calcium, and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain edema.


Asunto(s)
Acuaporina 4/metabolismo , Edema Encefálico/metabolismo , Secuencias de Aminoácidos , Animales , Acuaporina 4/química , Acuaporina 4/genética , Astrocitos/metabolismo , Edema Encefálico/genética , Calcio/metabolismo , Calmodulina/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Presión Osmótica , Fosforilación , Transporte de Proteínas , Ratas
7.
Biochim Biophys Acta ; 1850(12): 2410-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26365508

RESUMEN

BACKGROUND: Aquaporin (AQP) water channels are best known as passive transporters of water that are vital for water homeostasis. SCOPE OF REVIEW: AQP knockout studies in whole animals and cultured cells, along with naturally occurring human mutations suggest that the transport of neutral solutes through AQPs has important physiological roles. Emerging biophysical evidence suggests that AQPs may also facilitate gas (CO2) and cation transport. AQPs may be involved in cell signalling for volume regulation and controlling the subcellular localization of other proteins by forming macromolecular complexes. This review examines the evidence for these diverse functions of AQPs as well their physiological relevance. MAJOR CONCLUSIONS: As well as being crucial for water homeostasis, AQPs are involved in physiologically important transport of molecules other than water, regulation of surface expression of other membrane proteins, cell adhesion, and signalling in cell volume regulation. GENERAL SIGNIFICANCE: Elucidating the full range of functional roles of AQPs beyond the passive conduction of water will improve our understanding of mammalian physiology in health and disease. The functional variety of AQPs makes them an exciting drug target and could provide routes to a range of novel therapies.


Asunto(s)
Acuaporinas/fisiología , Homeostasis , Agua/metabolismo , Secuencia de Aminoácidos , Animales , Acuaporinas/química , Mamíferos , Datos de Secuencia Molecular
8.
Biochim Biophys Acta ; 1840(5): 1492-506, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24090884

RESUMEN

BACKGROUND: Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes. SCOPE OF REVIEW: AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volume regulation (CVR) is particularly notable. This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR. We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. MAJOR CONCLUSIONS: AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapid movement of water across diverse cell membranes and playing regulatory roles in CVR. Gating mechanisms have been proposed for human AQPs, but have only been reported for plant and microbial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. GENERAL SIGNIFICANCE: Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.


Asunto(s)
Acuaporinas/fisiología , Agua Corporal/metabolismo , Transporte Biológico , Tamaño de la Célula , Humanos
9.
Mol Membr Biol ; 30(1): 1-12, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23170905

RESUMEN

Water passes through cell membranes relatively slowly by diffusion. In order to maintain water homeostasis, the rapid and specific regulation of cellular water flow is mediated by the aquaporin (AQP) family of membrane protein water channels. The wide range of tissues that are known to express AQPs is reflected by their involvement in many physiological processes and diseases; thirteen human AQPs have been identified to date and the majority are highly specific for water while others show selectivity for water, glycerol and other small solutes. Receptor mediated translocation, via hormone activation, is an established method of AQP regulation, especially for AQP2. There is now an emerging consensus that the rapid and reversible translocation of other AQPs from intracellular vesicles to the plasma membrane, triggered by a range of stimuli, confers altered membrane permeability thereby acting as a regulatory mechanism. This review examines the molecular components that may enable such AQP regulation; these include cytoskeletal proteins, kinases, calcium and retention or localization signals. Current knowledge on the dynamic regulation of sub-cellular AQP translocation in response to a specific trigger is explored in the context of the regulation of cellular water flow.


Asunto(s)
Acuaporinas/química , Acuaporinas/metabolismo , Transporte de Proteínas , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas del Citoesqueleto/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Quinasa C/metabolismo , Agua/metabolismo
10.
Int J Offender Ther Comp Criminol ; : 306624X241254691, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855808

RESUMEN

Living in recovery housing can improve addiction recovery and desistance outcomes. This study examined whether retention in recovery housing and types of discharge outcomes (completed, "neutral," and "negative" outcomes) differed for clients with recent criminal legal system (CLS) involvement. Using data from 101 recovery residences certified by the Virginia Association of Recovery Residences based on 1,978 individuals completing the REC-CAP assessment, competing risk analyses (cumulative incidence function, restricted mean survival time, and restricted mean time lost) followed by the marginalization of effects were implemented to examine program outcomes at final discharge. Residents with recent CLS involvement were more likely to be discharged for positive reasons (successful completion of their goals) and premature/negative reasons (e.g., disciplinary releases) than for neutral reasons. Findings indicate that retention for 6-18 months is essential to establish and maintain positive discharge outcomes, and interventions should be developed to enhance retention in recovery residents with recent justice involvement.

11.
J Subst Use Addict Treat ; 158: 209283, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38159911

RESUMEN

INTRODUCTION: Strong and ever-growing evidence highlights the effectiveness of recovery housing in supporting and sustaining substance use disorder (SUD) recovery, especially when augmented by intensive support that includes assertive linkages to community services. This study aims to evaluate a pilot intensive recovery support (IRS) intervention for individuals (n = 175) entering certified Level II and III recovery residences. These individuals met at least three out of five conditions (no health insurance; no driving license; substance use in the last 14 days; current unemployment; possession of less than $75 capital). The study assesses the impact of the IRS on engagement, retention, and changes in recovery capital, compared to the business-as-usual Standard Recovery Support (SRS) approach (n = 1758). METHODS: The study employed quasi-experimental techniques to create weighted and balanced counterfactual groups. These groups, derived from the Recovery Capital assessment tool (REC-CAP), enabled comparison of outcomes between people receiving IRS and those undergoing SRS. RESULTS: After reweighting for resident demographics, service needs, and barriers to recovery, those receiving IRS exhibited improved retention rates, reduced likelihood of disengagement, and growth in recovery capital after living in the residence for 6-9 months. CONCLUSION: The results from this pilot intervention indicate that intensive recovery support, which integrates assertive community linkages and enhanced recovery coaching, outperforms a balanced counterfactual group in engagement, length of stay, and recovery capital growth. We suggest that this model may be particularly beneficial to those entering Level II and Level III recovery housing with lower levels of recovery capital at admission.


Asunto(s)
Servicios Comunitarios de Salud Mental , Trastornos Relacionados con Sustancias , Humanos , Vivienda , Servicios Comunitarios de Salud Mental/métodos , Trastornos Relacionados con Sustancias/terapia , Proyectos de Investigación , Seguro de Salud
12.
J Biol Chem ; 287(14): 11516-25, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22334691

RESUMEN

The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The structural features of the family and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this only has been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here, we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations through transient receptor potential channels, which trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30 s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly changing local cellular water availability. Moreover, because calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.


Asunto(s)
Acuaporina 1/metabolismo , Espacio Intracelular/metabolismo , Ósmosis , Agua/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Tamaño de la Célula , Células HEK293 , Homeostasis , Humanos , Cinética , Fosforilación , Proteína Quinasa C/química , Proteína Quinasa C/metabolismo , Transporte de Proteínas , Ratas , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/metabolismo
14.
Mol Membr Biol ; 28(6): 398-411, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21770695

RESUMEN

In the last 15 years, 80% of all recombinant proteins reported in the literature were produced in the bacterium, Escherichia coli, or the yeast, Pichia pastoris. Nonetheless, developing effective general strategies for producing recombinant eukaryotic membrane proteins in these organisms remains a particular challenge. Using a validated screening procedure together with accurate yield quantitation, we therefore wished to establish the critical steps contributing to high yields of recombinant eukaryotic membrane protein in P. pastoris. Whilst the use of fusion partners to generate chimeric constructs and directed mutagenesis have previously been shown to be effective in bacterial hosts, we conclude that this approach is not transferable to yeast. Rather, codon optimization and the preparation and selection of high-yielding P. pastoris clones are effective strategies for maximizing yields of human aquaporins.


Asunto(s)
Codón/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Electroporación , Humanos , Cloruro de Litio , Pichia/genética , Proteínas Recombinantes/genética , Transformación Genética
15.
Biochim Biophys Acta Biomembr ; 1864(4): 183853, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34973181

RESUMEN

The aquaporins (AQPs) form a family of integral membrane proteins that facilitate the movement of water across biological membrane by osmosis, as well as facilitating the diffusion of small polar solutes. AQPs have been recognised as drug targets for a variety of disorders associated with disrupted water or solute transport, including brain oedema following stroke or trauma, epilepsy, cancer cell migration and tumour angiogenesis, metabolic disorders, and inflammation. Despite this, drug discovery for AQPs has made little progress due to a lack of reproducible high-throughput assays and difficulties with the druggability of AQP proteins. However, recent studies have suggested that targetting the trafficking of AQP proteins to the plasma membrane is a viable alternative drug target to direct inhibition of the water-conducting pore. Here we review the literature on the trafficking of mammalian AQPs with a view to highlighting potential new drug targets for a variety of conditions associated with disrupted water and solute homeostasis.


Asunto(s)
Acuaporinas/metabolismo , Membrana Celular/metabolismo , Animales , Humanos , Ósmosis , Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Agua/metabolismo
16.
Biochem Soc Trans ; 39(3): 719-23, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21599640

RESUMEN

Membrane proteins are drug targets for a wide range of diseases. Having access to appropriate samples for further research underpins the pharmaceutical industry's strategy for developing new drugs. This is typically achieved by synthesizing a protein of interest in host cells that can be cultured on a large scale, allowing the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to that of the native human source cells of many proteins of interest, while also being quick, easy and cheap to grow and process. Even in these cells, the production of human membrane proteins can be plagued by low functional yields; we wish to understand why. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast host strains. By relieving the bottlenecks to recombinant membrane protein production in yeast, we aim to contribute to the drug discovery pipeline, while providing insight into translational processes.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Levaduras/metabolismo , Bioingeniería , Humanos , Proteínas de la Membrana/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Levaduras/citología , Levaduras/genética
17.
Bioengineering (Basel) ; 8(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672148

RESUMEN

Neurodegenerative diseases (NDDs) are incurable and debilitating conditions that result in progressive degeneration and/or death of nerve cells in the central nervous system (CNS). Identification of viable therapeutic targets and new treatments for CNS disorders and in particular, for NDDs is a major challenge in the field of drug discovery. These difficulties can be attributed to the diversity of cells involved, extreme complexity of the neural circuits, the limited capacity for tissue regeneration, and our incomplete understanding of the underlying pathological processes. Drug discovery is a complex and multidisciplinary process. The screening attrition rate in current drug discovery protocols mean that only one viable drug may arise from millions of screened compounds resulting in the need to improve discovery technologies and protocols to address the multiple causes of attrition. This has identified the need to screen larger libraries where the use of efficient high-throughput screening (HTS) becomes key in the discovery process. HTS can investigate hundreds of thousands of compounds per day. However, if fewer compounds could be screened without compromising the probability of success, the cost and time would be largely reduced. To that end, recent advances in computer-aided design, in silico libraries, and molecular docking software combined with the upscaling of cell-based platforms have evolved to improve screening efficiency with higher predictability and clinical applicability. We review, here, the increasing role of HTS in contemporary drug discovery processes, in particular for NDDs, and evaluate the criteria underlying its successful application. We also discuss the requirement of HTS for novel NDD therapies and examine the major current challenges in validating new drug targets and developing new treatments for NDDs.

18.
Biochemistry ; 49(5): 821-3, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20063900

RESUMEN

It is well-known that the rapid flow of water into and out of cells is controlled by membrane proteins called aquaporins (AQPs). However, the mechanisms that allow cells to quickly respond to a changing osmotic environment are less well established. Using GFP-AQP fusion proteins expressed in HEK293 cells, we demonstrate the reversible manipulation of cellular trafficking of AQP1. AQP1 trafficking was mediated by the tonicity of the cell environment in a specific PKC- and microtubule-dependent manner. This suggests that the increased level of water transport following osmotic change may be due a phosphorylation-dependent increase in the level of AQP1 trafficking resulting in membrane localization.


Asunto(s)
Acuaporina 1/metabolismo , Membrana Celular/metabolismo , Microtúbulos/enzimología , Proteína Quinasa C/fisiología , Acuaporina 1/genética , Línea Celular , Membrana Celular/enzimología , Membrana Celular/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Proteínas de la Fusión de la Membrana/genética , Proteínas de la Fusión de la Membrana/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Presión Osmótica/fisiología , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Agua/metabolismo
19.
PhytoKeys ; 168: 1-333, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335445

RESUMEN

Lycianthes, the third most species-rich genus in the Solanaceae, is distributed in both the New and Old Worlds and is especially diverse in Mexico. Here we provide an identification key, taxonomic descriptions, distribution maps, and illustrations of specimens, trichomes, flowers, and fruits for the 53 known Lycianthes taxa of Mexico and Guatemala. The new combination Lycianthes scandens (Mill.) M.Nee is made and replaces the name Lycianthes lenta (Cav.) Bitter, which is placed in synonymy. Within L. scandens, two varieties are recognized (Lycianthes scandens var. scandens and Lycianthes scandens var. flavicans (Bitter) J.Poore & E.Dean, comb. nov.). In addition, one new species (Lycianthes rafatorresii E.Dean, sp. nov.) is described from eastern Mexico, and 10 names (either recognized taxa or synonyms of recognized taxa) are lectotypified, including the names Solanum heteroclitum Sendtn., S. rantonnetii Carrière, and S. synantherum Sendtn. The species L. multiflora Bitter and L. synanthera (Sendtn.) Bitter are excluded from the treatment, as research indicates that they do not occur in Mexico and Guatemala, however full synonymy for both names is given.

20.
JOR Spine ; 2(1): e1049, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31463463

RESUMEN

The intervertebral disc (IVD) is a highly hydrated tissue, the rich proteoglycan matrix imbibes water, enabling the disc to withstand compressive loads. During aging and degeneration increased matrix degradation leads to dehydration and loss of function. Aquaporins (AQP) are a family of transmembrane channel proteins that selectively allow the passage of water in and out of cells and are responsible for maintaining water homeostasis in many tissues. Here, the expression of all 13 AQPs at gene and protein level was investigated in human and canine nondegenerate and degenerate IVDs to develop an understanding of the role of AQPs during degeneration. Furthermore, in order to explore the transition of notochordal cells (NCs) towards nucleus pulposus (NP) cells, AQP expression was investigated in canine IVDs enriched in NCs to understand the role of AQPs in IVD maturation. AQP0, 1, 2, 3, 4, 5, 6, 7, and 9 were expressed at gene and protein level in both nondegenerate and degenerate human NP tissue. AQP2 and 7 immunopositivity increased with degeneration in human NP tissue, whereas AQP4 expression decreased with degeneration in a similar way to AQP1 and 5 shown previously. All AQP proteins that were identified in human NP tissue were also expressed in canine NP tissue. AQP2, 5, 6, and 9 were found to localize to vacuole-like membranes and cell membranes in NC cells. In conclusion, AQPs were abundantly expressed in human and canine IVDs. The expression of many AQP isotypes potentially alludes to multifaceted functions related to adaption of NP cells to the conditions they encounter within their microenvironment in health and degeneration. The presence of AQPs within the IVD may suggest an adaptive role for these water channels during the development and maintenance of the healthy, mature IVD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA