Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Malar J ; 21(1): 247, 2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030292

RESUMEN

BACKGROUND: Plasmodium falciparum (Pf) sporozoite (SPZ) vaccines are the only candidate malaria vaccines that induce > 90% vaccine efficacy (VE) against controlled human malaria infection and the only malaria vaccines to have achieved reproducible VE against malaria in adults in Africa. The goal is to increase the impact and reduce the cost of PfSPZ vaccines by optimizing vaccine potency and manufacturing, which will benefit from identification of immunological responses contributing to protection in humans. Currently, there is no authentic animal challenge model for assessing P. falciparum malaria VE. Alternatively, Plasmodium knowlesi (Pk), which infects humans and non-human primates (NHPs) in nature, can be used to experimentally infect rhesus macaques (Macaca mulatta) to assess VE. METHODS: Sanaria has, therefore, produced purified, vialed, cryopreserved PkSPZ and conducted challenge studies in several naïve NHP cohorts. In the first cohort, groups of three rhesus macaques each received doses of 5 × 102, 2.5 × 103, 1.25 × 104 and 2.5 × 104 PkSPZ administered by direct venous inoculation. The infectivity of 1.5 × 103 PkSPZ cryopreserved with an altered method and of 1.5 × 103 PkSPZ cryopreserved for four years was tested in a second and third cohort of rhesus NHPs. The lastly, three pig-tailed macaques (Macaca nemestrina), a natural P. knowlesi host, were challenged with 2.5 × 103 PkSPZ cryopreserved six years earlier. RESULTS: In the first cohort, all 12 animals developed P. knowlesi parasitaemia by thick blood smear, and the time to positivity (prepatent period) followed a non-linear 4-parameter logistic sigmoidal model with a median of 11, 10, 8, and 7 days, respectively (r2 = 1). PkSPZ cryopreserved using a modified rapid-scalable method infected rhesus with a pre-patent period of 10 days, as did PkSPZ cryopreserved four years prior to infection, similar to the control group. Cryopreserved PkSPZ infected pig-tailed macaques with median time to positivity by thin smear, of 11 days. CONCLUSION: This study establishes the capacity to consistently infect NHPs with purified, vialed, cryopreserved PkSPZ, providing a foundation for future studies to probe protective immunological mechanisms elicited by PfSPZ vaccines that cannot be established in humans.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Plasmodium knowlesi , Adulto , Animales , Humanos , Macaca mulatta , Plasmodium falciparum , Esporozoítos
2.
Infect Immun ; 89(11): e0016521, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34310889

RESUMEN

Preerythrocytic vaccines prevent malaria by targeting parasites in the clinically silent sporozoite and liver stages and preventing progression to the virulent blood stages. The leading preerythrocytic vaccine, RTS,S/AS01E (Mosquirix), entered implementation programs in 2019 and targets the major sporozoite surface antigen, circumsporozoite protein (CSP). However, in phase III clinical trials, RTS,S conferred partial protection with limited durability, indicating a need to improve CSP-based vaccination. Previously, we identified highly expressed liver-stage proteins that could potentially be used in combination with CSP; they are referred to as preerythrocytic vaccine antigens (PEVAs). Here, we developed heterologous prime-boost CSP vaccination models to confer partial sterilizing immunity against Plasmodium yoelii (protein prime-adenovirus 5 [Ad5] boost) and Plasmodium berghei (DNA prime-Ad5 boost) in mice. When combined as individual antigens with P. yoelii CSP (PyCSP), three of eight P. yoelii PEVAs significantly enhanced sterile protection against sporozoite challenge, compared to PyCSP alone. Similar results were obtained when three P. berghei PEVAs and P. berghei CSP were combined in a single vaccine regimen. In general, PyCSP antibody responses were similar after CSP alone versus CSP plus PEVA vaccinations. Both P. yoelii and P. berghei CSP plus PEVA combination vaccines induced robust CD8+ T cell responses, including signature gamma interferon (IFN-γ) increases. In the P. berghei model system, IFN-γ responses were significantly higher in hepatic versus splenic CD8+ T cells. The addition of novel antigens may enhance the degree and duration of sterile protective immunity conferred by a human vaccine such as RTS,S.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Proteínas Protozoarias/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Interferón gamma/biosíntesis , Activación de Linfocitos , Malaria/prevención & control , Ratones , Ratones Endogámicos BALB C , Vacunación
3.
J Immunol ; 199(11): 3781-3788, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29079696

RESUMEN

Whole-sporozoite vaccines confer sterilizing immunity to malaria-naive individuals by unknown mechanisms. In the first PfSPZ Vaccine trial ever in a malaria-endemic population, Vδ2 γδ T cells were significantly elevated and Vγ9/Vδ2 transcripts ranked as the most upregulated in vaccinees who were protected from Plasmodium falciparum infection. In a mouse model, absence of γδ T cells during vaccination impaired protective CD8 T cell responses and ablated sterile protection. γδ T cells were not required for circumsporozoite protein-specific Ab responses, and γδ T cell depletion before infectious challenge did not ablate protection. γδ T cells alone were insufficient to induce protection and required the presence of CD8α+ dendritic cells. In the absence of γδ T cells, CD8α+ dendritic cells did not accumulate in the livers of vaccinated mice. Altogether, our results show that γδ T cells were essential for the induction of sterile immunity during whole-organism vaccination.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Plasmodium falciparum/fisiología , Esporozoítos/inmunología , Linfocitos T/inmunología , Adulto , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos CD8/metabolismo , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Estudios de Seguimiento , Humanos , Inmunidad , Hígado/patología , Malaria/prevención & control , Malí , Ratones , Fragmentos de Péptidos/inmunología , Proteínas Protozoarias/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Vacunación
4.
J Infect Dis ; 218(suppl_5): S434-S437, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29878224

RESUMEN

Following the Ebola virus epidemic in West Africa, several studies investigated whether there was an effect of Plasmodium coinfection on survival in Ebola virus (EBOV) disease patients. Different effects of coinfection were found in different patient cohorts. To determine whether an effect of Plasmodium coinfection on EBOV survival may exist, we modeled coinfection of Plasmodium yoelii and mouse-adapted EBOV (MA-EBOV) in CD1 mice. Subsequent infection with MA-EBOV at different time points after P. yoelii infection did not have any significant effect on survival.


Asunto(s)
Coinfección/mortalidad , Fiebre Hemorrágica Ebola/mortalidad , Malaria/mortalidad , Plasmodium yoelii , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
5.
J Infect Dis ; 215(1): 122-130, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077589

RESUMEN

Trimethoprim-sulfamethoxazole (TMP-SMX) is widely used in malaria-endemic areas in human immunodeficiency virus (HIV)-infected children and HIV-uninfected, HIV-exposed children as opportunistic infection prophylaxis. Despite the known effects that TMP-SMX has in reducing clinical malaria, its impact on development of malaria-specific immunity in these children remains poorly understood. Using rodent malaria models, we previously showed that TMP-SMX, at prophylactic doses, can arrest liver stage development of malaria parasites and speculated that TMP-SMX prophylaxis during repeated malaria exposures would induce protective long-lived sterile immunity targeting pre-erythrocytic stage parasites in mice. Using the same models, we now demonstrate that repeated exposures to malaria parasites during TMP-SMX administration induces stage-specific and long-lived pre-erythrocytic protective anti-malarial immunity, mediated primarily by CD8+ T-cells. Given the HIV infection and malaria coepidemic in sub-Saharan Africa, clinical studies aimed at determining the optimum duration of TMP-SMX prophylaxis in HIV-infected or HIV-exposed children must account for the potential anti-infection immunity effect of TMP-SMX prophylaxis.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria/inmunología , Malaria/prevención & control , Plasmodium/inmunología , Esporozoítos/inmunología , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Infecciones por VIH/parasitología , Inmunización , Interferón gamma/biosíntesis , Estadios del Ciclo de Vida , Malaria/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Infecciones Oportunistas/tratamiento farmacológico , Infecciones Oportunistas/prevención & control , Plasmodium/efectos de los fármacos , Plasmodium/crecimiento & desarrollo
6.
J Infect Dis ; 206(11): 1706-14, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23125449

RESUMEN

BACKGROUND: Although nonnucleoside reverse transcriptase inhibitors (NNRTIs) are usually part of first-line treatment regimens for human immunodeficiency virus (HIV), their activity on Plasmodium liver stages remains unexplored. Additionally, trimethoprim-sulfamethoxazole (TMP-SMX), used for opportunistic infection prophylaxis in HIV-exposed infants and HIV-infected patients, reduces clinical episodes of malaria; however, TMP-SMX effect on Plasmodium liver stages requires further study. METHODS: We characterized NNRTI and TMP-SMX effects on Plasmodium liver stages in vivo using Plasmodium yoelii. On the basis of these results, we conducted in vitro studies assessing TMP-SMX effects on the rodent parasites P. yoelii and Plasmodium berghei and on the human malaria parasite Plasmodium falciparum. RESULTS: Our data showed NNRTI treatment modestly reduced P. yoelii liver stage parasite burden and minimally extended prepatent period. TMP-SMX administration significantly reduced liver stage parasite burden, preventing development of patent parasitemia in vivo. TMP-SMX inhibited development of rodent and P. falciparum liver stage parasites in vitro. CONCLUSIONS: NNRTIs modestly affect liver stage Plasmodium parasites, whereas TMP-SMX prevents patent parasitemia. Because drugs that inhibit liver stages target parasites when they are present in lower numbers, these results may have implications for eradication efforts. Understanding HIV drug effects on Plasmodium liver stages will aid in optimizing treatment regimens for HIV-exposed and HIV-infected infected patients in malaria-endemic areas.


Asunto(s)
Hígado/parasitología , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/farmacología , Combinación Trimetoprim y Sulfametoxazol/farmacología , Animales , Antimaláricos/administración & dosificación , Antimaláricos/farmacología , Femenino , Humanos , Ratones , Parasitemia/tratamiento farmacológico , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Especificidad de la Especie , Combinación Trimetoprim y Sulfametoxazol/administración & dosificación
7.
Lab Anim (NY) ; 52(12): 315-323, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932470

RESUMEN

Placental malaria vaccines (PMVs) are being developed to prevent severe sequelae of placental malaria (PM) in pregnant women and their offspring. The leading candidate vaccine antigen VAR2CSA mediates parasite binding to placental receptor chondroitin sulfate A (CSA). Despite promising results in small animal studies, recent human trials of the first two PMV candidates (PAMVAC and PRIMVAC) generated limited cross-reactivity and cross-inhibitory activity to heterologous parasites. Here we immunized Aotus nancymaae monkeys with three PMV candidates (PAMVAC, PRIMVAC and ID1-ID2a_M1010) adjuvanted with Alhydrogel, and exploited the model to investigate boosting of functional vaccine responses during PM episodes as well as with nanoparticle antigens. PMV candidates induced high levels of antigen-specific IgG with significant cross-reactivity across PMV antigens by enzyme-linked immunosorbent assay. Conversely, PMV antibodies recognized native VAR2CSA and blocked CSA adhesion of only homologous parasites and not of heterologous parasites. PM episodes did not significantly boost VAR2CSA antibody levels or serum functional activity; nanoparticle and monomer antigens alike boosted serum reactivity but not functional activities. Overall, PMV candidates induced functional antibodies with limited heterologous activity in Aotus monkeys, similar to responses reported in humans. The Aotus model appears suitable for preclinical downselection of PMV candidates and assessment of antibody boosting by PM episodes.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Animales , Humanos , Femenino , Embarazo , Placenta/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Plasmodium falciparum , Antígenos de Protozoos , Anticuerpos Antiprotozoarios , Malaria/prevención & control , Aotidae , Inmunidad
8.
Am J Trop Med Hyg ; 104(2): 666-670, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33350377

RESUMEN

HIV and malaria geographically overlap. Trimethoprim-sulfamethoxazole (TMP-SMX) is a drug widely used in HIV-exposed uninfected and infected children in malaria-endemic areas, and is known to have antimalarial effects. Further study in terms of antimalarial impact and effect on development of malaria-specific immunity is therefore essential. Using rodent malaria models, we previously showed that repeated Plasmodium exposure during TMP-SMX administration, or chemoprophylaxis vaccination (CVac), induces CD8 T-cell-dependent preerythrocytic immunity. However, humoral immune responses have been shown to be important in models of preerythrocytic immunity. Herein, we demonstrate that antibody-mediated responses contribute to protective immunity induced by CVac immune sera using TMP-SMX in models of homologous, but not heterologous, parasite species. Clinical studies must account for potential anti-Plasmodium antibody induced during TMP-SMX prophylaxis.


Asunto(s)
Malaria/inmunología , Malaria/prevención & control , Plasmodium berghei/inmunología , Plasmodium yoelii/inmunología , Esporozoítos/inmunología , Combinación Trimetoprim y Sulfametoxazol/administración & dosificación , Animales , Femenino , Inmunización , Ratones , Ratones Endogámicos BALB C , Plasmodium berghei/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos
9.
Am J Trop Med Hyg ; 103(5): 1893-1901, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32815499

RESUMEN

Investigations of malaria infection are often conducted by studying rodent Plasmodium species in inbred laboratory mice, but the efficacy of vaccines or adjunctive therapies observed in these models often does not translate to protection in humans. This raises concerns that mouse malaria models do not recapitulate important features of human malaria infections. African woodland thicket rats (Grammomys surdaster) are the natural host for the rodent malaria parasite Plasmodium berghei and the suspected natural host for Plasmodium vinckei vinckei. Previously, we reported that thicket rats are highly susceptible to diverse rodent parasite species, including P. berghei, Plasmodium yoelii, and Plasmodium chabaudi chabaudi, and are a more stringent model to assess the efficacy of whole-sporozoite vaccines than laboratory mice. Here, we compare the course of infection and virulence with additional rodent Plasmodium species, including various strains of P. berghei, P. yoelii, P. chabaudi, and P. vinckei, in thicket rats versus laboratory mice. We present evidence that rodent malaria parasite growth typically differs between the natural versus nonnatural host; G. surdaster limit infection by multiple rodent malaria strains, delaying and reducing peak parasitemia compared with laboratory mice. The course of malaria infection in thicket rats varied depending on parasite species and strain, resulting in self-cure, chronic parasitemia, or rapidly lethal infection, thus offering a variety of rodent malaria models to study different clinical outcomes in the natural host.


Asunto(s)
Anopheles/parasitología , Malaria/parasitología , Parasitemia/parasitología , Plasmodium/inmunología , Vacunas/inmunología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Murinae , Plasmodium berghei/inmunología , Plasmodium chabaudi/inmunología , Plasmodium yoelii/inmunología , Esporozoítos
10.
Am J Trop Med Hyg ; 96(4): 835-841, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28115674

RESUMEN

AbstractInbred mice are commonly used to test candidate malaria vaccines, but have been unreliable for predicting efficacy in humans. To establish a more rigorous animal model, we acquired African woodland thicket rats of the genus Grammomys, the natural hosts for Plasmodium berghei. Thicket rats were acquired and identified as Grammomys surdaster by skull and teeth measurements and mitochondrial DNA genotyping. Herein, we demonstrate that thicket rats are highly susceptible to infection by P. berghei, and moderately susceptible to Plasmodium yoelii and Plasmodium chabaudi: 1-2 infected mosquito bites or 25-100 sporozoites administered by intravenous injection consistently resulted in patent parasitemia with P. berghei, and resulted in patent parasitemia with P. yoelii and P. chabaudi strains for at least 50% of animals. We then assessed efficacy of whole-organism vaccines to induce sterile immunity, and compared the thicket rat model to conventional mouse models. Using P. berghei ANKA radiation-attenuated sporozoites, and P. berghei ANKA and P. yoelii chemoprophylaxis vaccination approaches, we found that standard doses of vaccine sufficient to protect laboratory mice for a long duration against malaria challenge, are insufficient to protect thicket rats, which require higher doses of vaccine to achieve even short-term sterile immunity. Thicket rats may offer a more stringent and pertinent model for evaluating whole-organism vaccines.


Asunto(s)
Modelos Animales de Enfermedad , Vacunas contra la Malaria/inmunología , Malaria/prevención & control , Murinae/parasitología , Plasmodium berghei/fisiología , Animales , Anopheles/parasitología , Femenino , Malaria/parasitología , Ratones , Ratones Endogámicos
11.
Nat Microbiol ; 2: 16276, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165471

RESUMEN

Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections1-5, creating an infectious reservoir to sustain transmission1,6. It is widely accepted that the maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation7. However, genes involved in this process have been identified in only two of five human-infecting species: Plasmodium falciparum and Plasmodium knowlesi. Furthermore, little is understood about the early events in the establishment of chronic infection in these species. Using a rodent model we demonstrate that from the infecting population, only a minority of parasites, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasites and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintenance of chronic P. falciparum infections7-9. Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Because pir genes are common to most, if not all, species of Plasmodium10, this process may be a common way of regulating the establishment of chronic infections.


Asunto(s)
Malaria/parasitología , Plasmodium/genética , Plasmodium/patogenicidad , Factores de Virulencia/genética , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Enfermedad Crónica , Femenino , Humanos , Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Ratones , Plasmodium/inmunología , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Plasmodium knowlesi/genética , Plasmodium knowlesi/patogenicidad
12.
Sci Rep ; 7(1): 17867, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259245

RESUMEN

Survival of antibody-secreting plasma cells (PCs) is vital for sustained antibody production. However, it remains poorly understood how long-lived PCs (LLPCs) are generated and maintained. Here we report that ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is preferentially upregulated in bone marrow LLPCs compared with their splenic short-lived counterparts (SLPCs). We studied ENPP1-deficient mice (Enpp1 -/- ) to determine how the enzyme affects PC biology. Although Enpp1 -/- mice generated normal levels of germinal center B cells and plasmablasts in periphery, they produced significantly reduced numbers of LLPCs following immunization with T-dependent antigens or infection with plasmodium C. chabaudi. Bone marrow chimeric mice showed B cell intrinsic effect of ENPP1 selectively on generation of bone marrow as well as splenic LLPCs. Moreover, Enpp1 -/- PCs took up less glucose and had lower levels of glycolysis than those of wild-type controls. Thus, ENPP1 deficiency confers an energetic disadvantage to PCs for long-term survival and antibody production.


Asunto(s)
Adenosina Trifosfato/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Células Plasmáticas/metabolismo , Pirofosfatasas/metabolismo , Animales , Formación de Anticuerpos/inmunología , Linfocitos B/metabolismo , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Supervivencia Celular/fisiología , Células Cultivadas , Centro Germinal/metabolismo , Glucosa/metabolismo , Glucólisis/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Bazo/metabolismo , Regulación hacia Arriba/fisiología
13.
PLoS One ; 11(7): e0160120, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27467392

RESUMEN

Pregnancy malaria (PM) is associated with poor pregnancy outcomes, and can arise due to relapse, recrudescence or a re-infection with heterologous parasites. We have used the Plasmodium chabaudi model of pregnancy malaria in C57BL/6 mice to examine recrudescence and heterologous infection using CB and AS parasite strains. After an initial course of patent parasitemia and first recrudescence, CB but not AS parasites were observed to recrudesce again in most animals that became pregnant. Pregnancy exacerbated heterologous CB infection of AS-experienced mice, leading to mortality and impaired post-natal growth of pups. Parasites were detected in placental blood without evidence of sequestration, unlike P. falciparum but similar to other malaria species that infect pregnant women. Inflammatory cytokine levels were elevated in pregnant females during malaria, and associated with intensity of infection and with poor outcomes. Pups born to dams during heterologous infection were more resistant to malaria infections at 6-7 weeks of age, compared to pups born to malaria-experienced but uninfected dams or to malaria-naïve dams. In summary, our mouse model reproduces several features of human PM, including recrudescences, heterologous infections, poor pregnancy outcomes associated with inflammatory cytokines, and modulation of offspring susceptibility to malaria. This model should be further studied to explore mechanisms underlying PM pathogenesis.


Asunto(s)
Peso al Nacer , Susceptibilidad a Enfermedades , Malaria/patología , Complicaciones Parasitarias del Embarazo/patología , Animales , Citocinas/sangre , Femenino , Malaria/complicaciones , Malaria/parasitología , Ratones , Ratones Endogámicos C57BL , Plasmodium chabaudi/aislamiento & purificación , Embarazo , Resultado del Embarazo
14.
Front Microbiol ; 6: 283, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25914686

RESUMEN

Chemoprophylaxis Vaccination (CVac) confers long lasting sterile protection against homologous parasite strains in humans, and involves inoculation of infectious sporozoites (SPZ) under drug cover. CVac using the drug chloroquine (CQ) induces pre-erythrocytic immunity in humans that includes antibody to SPZ and T-cell responses to liver stage (LS) parasites. The mechanism by which CVac with CQ induces strong protective immunity is not understood as untreated infections do not confer protection. CQ kills blood stage parasites, but its effect on LS parasites is poorly studied. Here we hypothesized that CQ may prolong or perturb LS development of Plasmodium, as a potential explanation for enhanced pre-erythrocytic immune responses. Balb/c mice with or without CQ prophylaxis were infected with sporozoite forms of a luciferase-expressing rodent parasite, Plasmodium yoelii-Luc (Py-Luc). Mice that received primaquine, a drug that kills LS parasites, served as a positive control of drug effect. Parasite burden in liver was measured both by bioluminescence and by qRT-PCR quantification of parasite transcript. Time to appearance of parasites in the blood was monitored by microscopic analysis of Giemsa-stained thick and thin blood smears. The parasite load in livers of CQ-treated and untreated mice did not significantly differ at any of the time points studied. Parasites appeared in the blood smears of both CQ-treated and untreated mice 3 days after infection. Taken together, our findings confirm that CQ neither eliminates LS parasites nor delays their development. Further investigations into the mechanism of CQ-induced protection after CVac are required, and may give insights relevant to drug and vaccine development.

15.
PLoS One ; 9(7): e100138, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24988386

RESUMEN

We have previously shown that the HIV protease inhibitor lopinavir-ritonavir (LPV-RTV) and the antibiotic trimethoprim sulfamethoxazole (TMP-SMX) inhibit Plasmodium liver stages in rodent malarias and in vitro in P. falciparum. Since clinically relevant levels are better achieved in the non-human-primate model, and since Plasmodium knowlesi is an accepted animal model for the study of liver stages of malaria as a surrogate for P. falciparum infection, we investigated the antimalarial activity of these drugs on Plasmodium knowlesi liver stages in rhesus macaques. We demonstrate that TMP-SMX and TMP-SMX+LPV-RTV (in combination), but not LPV-RTV alone, inhibit liver stage parasite development. Because drugs that inhibit the clinically silent liver stages target parasites when they are present in lower numbers, these results may have implications for eradication efforts.


Asunto(s)
Antimaláricos/farmacología , Inhibidores de la Proteasa del VIH/farmacología , Lopinavir/farmacología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum , Ritonavir/farmacología , Sulfadoxina/farmacología , Trimetoprim/farmacología , Animales , Modelos Animales de Enfermedad , Combinación de Medicamentos , Hígado/metabolismo , Hígado/parasitología , Hígado/patología , Macaca mulatta , Malaria Falciparum/metabolismo , Malaria Falciparum/patología
16.
Science ; 344(6186): 871-7, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24855263

RESUMEN

Novel vaccines are urgently needed to reduce the burden of severe malaria. Using a differential whole-proteome screening method, we identified Plasmodium falciparum schizont egress antigen-1 (PfSEA-1), a 244-kilodalton parasite antigen expressed in schizont-infected red blood cells (RBCs). Antibodies to PfSEA-1 decreased parasite replication by arresting schizont rupture, and conditional disruption of PfSEA-1 resulted in a profound parasite replication defect. Vaccination of mice with recombinant Plasmodium berghei PbSEA-1 significantly reduced parasitemia and delayed mortality after lethal challenge with the Plasmodium berghei strain ANKA. Tanzanian children with antibodies to recombinant PfSEA-1A (rPfSEA-1A) did not experience severe malaria, and Kenyan adolescents and adults with antibodies to rPfSEA-1A had significantly lower parasite densities than individuals without these antibodies. By blocking schizont egress, PfSEA-1 may synergize with other vaccines targeting hepatocyte and RBC invasion.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/inmunología , Esquizontes/crecimiento & desarrollo , Adolescente , Adulto , Animales , Anticuerpos Antiprotozoarios/sangre , Niño , Hepatocitos/inmunología , Hepatocitos/parasitología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Kenia , Malaria/prevención & control , Ratones , Plasmodium berghei/inmunología , Plasmodium falciparum/inmunología , Proteínas Recombinantes/inmunología , Adulto Joven
17.
PLoS One ; 5(1): e8947, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-20126610

RESUMEN

It was recently reported that when mosquitoes infected with P. berghei sporozoites feed on mice, they deposit approximately 100-300 sporozoites in the dermis. When we inoculate P. yoelii (Py) sporozoites intravenously (IV) into BALB/c mice, the 50% infectious dose (ID(50)) is often less than 3 sporozoites, indicating that essentially all Py sporozoites in salivary glands are infectious. Thus, it should only take the bite of one infected mosquito to infect 100% of mice. In human subjects, it takes the bite of at least 5 P. falciparum-infected mosquitoes to achieve 100% blood stage infection. Exposure to 1-2 infected mosquitoes only leads to blood stage infection in approximately 50% of subjects. If mosquitoes carrying Py sporozoites inoculate 100-300 sporozoites per bite, and 1 to 2 mosquito bites achieve 50% blood stage infection rates, then this would suggest that the majority of sporozoites inoculated by mosquitoes into the dermis are not responsible for a productive infection, or that a significant number of sporozoite-infected mosquitoes do not inoculate any sporozoites. The objective of this study was to determine if this is the case. We therefore studied the infectivity to mice of the bites of 1, 2, 4, or 5-8 Py-infected mosquitoes. The bite of one Py sporozoite-infected mosquito caused blood stage infection in 41.4% (12/29) of mice, two bites infected 66.7% (22/33), four bites infected 75% (18/24), and five to eight bites infected 100% (21/21). These findings demonstrate that inoculation of sporozoites by mosquito bite is much less efficient than IV inoculation of Py sporozoites by needle and syringe. Such data may have implications for determining the best route and dose of administration to humans of our attenuated P. falciparum sporozoite vaccine, the scientific basis of which is immunity by bites from irradiated infected mosquitoes, and suggest that the challenge is to develop a method of administration that approximates IV inoculation, not one that mimics mosquito bite.


Asunto(s)
Anopheles/parasitología , Malaria/transmisión , Plasmodium yoelii/fisiología , Animales , Malaria/parasitología , Ratones , Ratones Endogámicos BALB C
18.
Vaccine ; 27(27): 3675-80, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19071177

RESUMEN

We are developing a radiation attenuated Plasmodium falciparum sporozoite (PfSPZ) malaria vaccine. An important step was to determine the minimum dose of irradiation required to adequately attenuate each sporozoite. This was studied in the Plasmodium yoelii rodent model system. Exposure to 100 Gy completely attenuated P. yoelii sporozoites (PySPZ). Next we demonstrated that immunization of mice intravenously with 3 doses of 750 PySPZ that had received 200 Gy, double the radiation dose required for attenuation, resulted in 100% protection. These results support the contention that a radiation attenuated sporozoite vaccine for malaria will be safe and effective at a range of radiation doses.


Asunto(s)
Vacunas contra la Malaria/efectos de la radiación , Plasmodium yoelii/inmunología , Esporozoítos/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Femenino , Inmunización , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Seguridad , Esporozoítos/inmunología , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/efectos de la radiación
19.
PLoS One ; 4(8): e6559, 2009 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-19668343

RESUMEN

Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA), alphavirus replicons (VRP), attenuated adenovirus serotype 5 (Ad), or attenuated poxvirus (Pox). These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost.


Asunto(s)
Macaca mulatta/inmunología , Vacunas contra la Malaria/inmunología , Malaria/veterinaria , Plasmodium knowlesi/inmunología , Animales , Anticuerpos Antiprotozoarios/biosíntesis , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Malaria/parasitología , Malaria/prevención & control , Vacunas contra la Malaria/administración & dosificación , Linfocitos T/inmunología , Virus/genética
20.
PLoS One ; 2(10): e1063, 2007 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17957247

RESUMEN

BACKGROUND: We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. METHODOLOGY: In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given i.v. 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-gamma, and by ELISA. CONCLUSIONS: 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher interferon-gamma ELIspot responses to the PkCSP antigen correlated with earlier appearance of parasites in the blood, despite the fact that PkCSP vaccines had a protective effect.


Asunto(s)
Vacunas contra la Malaria/química , Malaria/metabolismo , Malaria/prevención & control , Poxviridae/genética , Animales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos/sangre , Antígenos de Protozoos/inmunología , Ensayo de Inmunoadsorción Enzimática , Eritrocitos/virología , Sistema Inmunológico , Inmunización Secundaria , Macaca mulatta , Malaria/inmunología , Plásmidos/metabolismo , Plasmodium knowlesi , Linfocitos T/metabolismo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA