Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Neurosci ; 43(47): 7913-7928, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37802657

RESUMEN

Numerous rare variants that cause neurodevelopmental disorders (NDDs) occur within genes encoding synaptic proteins, including ionotropic glutamate receptors. However, in many cases, it remains unclear how damaging missense variants affect brain function. We determined the physiological consequences of an NDD causing missense mutation in the GRIK2 kainate receptor (KAR) gene, that results in a single amino acid change p.Ala657Thr in the GluK2 receptor subunit. We engineered this mutation in the mouse Grik2 gene, yielding a GluK2(A657T) mouse, and studied mice of both sexes to determine how hippocampal neuronal function is disrupted. Synaptic KAR currents in hippocampal CA3 pyramidal neurons from heterozygous A657T mice exhibited slow decay kinetics, consistent with incorporation of the mutant subunit into functional receptors. Unexpectedly, CA3 neurons demonstrated elevated action potential spiking because of downregulation of the small-conductance Ca2+ activated K+ channel (SK), which mediates the post-spike afterhyperpolarization. The reduction in SK activity resulted in increased CA3 dendritic excitability, increased EPSP-spike coupling, and lowered the threshold for the induction of LTP of the associational-commissural synapses in CA3 neurons. Pharmacological inhibition of SK channels in WT mice increased dendritic excitability and EPSP-spike coupling, mimicking the phenotype in A657T mice and suggesting a causative role for attenuated SK activity in aberrant excitability observed in the mutant mice. These findings demonstrate that a disease-associated missense mutation in GRIK2 leads to altered signaling through neuronal KARs, pleiotropic effects on neuronal and dendritic excitability, and implicate these processes in neuropathology in patients with genetic NDDs.SIGNIFICANCE STATEMENT Damaging mutations in genes encoding synaptic proteins have been identified in various neurodevelopmental disorders, but the functional consequences at the cellular and circuit level remain elusive. By generating a novel knock-in mutant mouse, this study examined the role of a pathogenic mutation in the GluK2 kainate receptor (KAR) subunit, a subclass of ionotropic glutamate receptors. Analyses of hippocampal CA3 pyramidal neurons determined elevated action potential firing because of an increase in dendritic excitability. Increased dendritic excitability was attributable to reduced activity of a Ca2+ activated K+ channel. These results indicate that a pathogenic KAR mutation results in dysregulation of dendritic K+ channels, which leads to an increase in synaptic integration and backpropagation of action potentials into distal dendrites.


Asunto(s)
Mutación Missense , Receptores de Ácido Kaínico , Masculino , Femenino , Humanos , Ratones , Animales , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Neuronas/fisiología , Hipocampo/fisiología , Células Piramidales/fisiología
2.
Mamm Genome ; 32(5): 350-363, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34086081

RESUMEN

Pathogenic variants in epilepsy genes result in a spectrum of clinical severity. One source of phenotypic heterogeneity is modifier genes that affect expressivity of a primary pathogenic variant. Mouse epilepsy models also display varying degrees of clinical severity on different genetic backgrounds. Mice with heterozygous deletion of Scn1a (Scn1a+/-) model Dravet syndrome, a severe epilepsy most often caused by SCN1A haploinsufficiency. Scn1a+/- mice recapitulate features of Dravet syndrome, including spontaneous seizures, sudden death, and cognitive/behavioral deficits. Scn1a+/- mice maintained on the 129S6/SvEvTac (129) strain have normal lifespan and no spontaneous seizures. In contrast, admixture with C57BL/6J (B6) results in epilepsy and premature lethality. We previously mapped Dravet Survival Modifier loci (Dsm1-Dsm5) responsible for strain-dependent differences in survival. Gabra2, encoding the GABAA α2 subunit, was nominated as a candidate modifier at Dsm1. Direct measurement of GABAA receptors found lower abundance of α2-containing receptors in hippocampal synapses of B6 mice relative to 129. We also identified a B6-specific single nucleotide deletion within Gabra2 that lowers mRNA and protein by nearly 50%. Repair of this deletion reestablished normal levels of Gabra2 expression. In this study, we used B6 mice with a repaired Gabra2 allele to evaluate Gabra2 as a genetic modifier of severity in Scn1a+/- mice. Gabra2 repair restored transcript and protein expression, increased abundance of α2-containing GABAA receptors in hippocampal synapses, and rescued epilepsy phenotypes of Scn1a+/- mice. These findings validate Gabra2 as a genetic modifier of Dravet syndrome, and support enhancing function of α2-containing GABAA receptors as treatment strategy for Dravet syndrome.


Asunto(s)
Epilepsias Mioclónicas/genética , Receptores de GABA-A/genética , Animales , Epilepsias Mioclónicas/fisiopatología , Ratones , Polimorfismo de Nucleótido Simple
3.
Nat Methods ; 15(5): 347-350, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29578537

RESUMEN

Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales.


Asunto(s)
Nicotina/farmacología , Procesos Fotoquímicos , Receptores Nicotínicos/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Calcio , Inmunohistoquímica , Ratones , Microscopía Confocal , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
4.
Mol Psychiatry ; 24(11): 1732-1747, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29703945

RESUMEN

Sensory perturbations in visual, auditory and tactile perception are core problems in fragile X syndrome (FXS). In the Fmr1 knockout mouse model of FXS, the maturation of synapses and circuits during critical period (CP) development in the somatosensory cortex is delayed, but it is unclear how this contributes to altered tactile sensory processing in the mature CNS. Here we demonstrate that inhibiting the juvenile chloride co-transporter NKCC1, which contributes to altered chloride homeostasis in developing cortical neurons of FXS mice, rectifies the chloride imbalance in layer IV somatosensory cortex neurons and corrects the development of thalamocortical excitatory synapses during the CP. Comparison of protein abundances demonstrated that NKCC1 inhibition during early development caused a broad remodeling of the proteome in the barrel cortex. In addition, the abnormally large size of whisker-evoked cortical maps in adult Fmr1 knockout mice was corrected by rectifying the chloride imbalance during the early CP. These data demonstrate that correcting the disrupted driving force through GABAA receptors during the CP in cortical neurons restores their synaptic development, has an unexpectedly large effect on differentially expressed proteins, and produces a long-lasting correction of somatosensory circuit function in FXS mice.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Corteza Somatosensorial/metabolismo , Sinapsis/metabolismo
5.
J Neurosci ; 38(16): 3901-3910, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29540547

RESUMEN

Kainate receptors are members of the glutamate receptor family that function by both generating ionotropic currents through an integral ion channel pore and coupling to downstream metabotropic signaling pathways. They are highly expressed in the striatum, yet their roles in regulating striatal synapses are not known. Using mice of both sexes, we demonstrate that GluK2-containing kainate receptors expressed in direct pathway spiny projection neurons (dSPNs) inhibit glutamate release at corticostriatal synapses in the dorsolateral striatum. This inhibition requires postsynaptic kainate-receptor-mediated mobilization of a retrograde endocannabinoid (eCB) signal and activation of presynaptic CB1 receptors. This pathway can be activated during repetitive 25 Hz trains of synaptic stimulation, causing short-term depression of corticostriatal synapses. This is the first study to demonstrate a role for kainate receptors in regulating eCB-mediated plasticity at the corticostriatal synapse and demonstrates an important role for these receptors in regulating basal ganglia circuits.SIGNIFICANCE STATEMENT The GRIK2 gene, encoding the GluK2 subunit of the kainate receptor, has been linked to several neuropsychiatric and neurodevelopmental disorders including obsessive compulsive disorder (OCD). Perseverative behaviors associated with OCD are known to result from pathophysiological changes in the striatum and kainate receptor knock-out mice have striatal-dependent phenotypes. However, the role of kainate receptors in striatal synapses is not known. We demonstrate that GluK2-containing kainate receptors regulate corticostriatal synapses by mobilizing endocannabinoids from direct pathway spiny projection neurons. Synaptic activation of GluK2 receptors during trains of synaptic input causes short-term synaptic depression, demonstrating a novel role for these receptors in regulating striatal circuits.


Asunto(s)
Cuerpo Estriado/metabolismo , Endocannabinoides/metabolismo , Ácido Glutámico/metabolismo , Receptores de Ácido Kaínico/metabolismo , Transmisión Sináptica , Animales , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Neuronas/metabolismo , Neuronas/fisiología , Receptores de Ácido Kaínico/genética , Sinapsis/metabolismo , Sinapsis/fisiología , Receptor de Ácido Kaínico GluK2
6.
J Physiol ; 597(16): 4293-4307, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31045243

RESUMEN

KEY POINTS: Dravet syndrome mice (Scn1a+/- ) demonstrate a marked strain dependence for the severity of seizures which is correlated with GABAA receptor α2 subunit expression. The α2 /α3 subunit selective positive allosteric modulator (PAM) AZD7325 potentiates inhibitory postsynaptic currents (IPSCs) specifically in perisomatic synapses. AZD7325 demonstrates stronger effects on IPSCs in the seizure resistant mouse strain, consistent with higher α2 subunit expression. AZD7325 demonstrates seizure protective effects in Scn1a+/- mice without apparent sedative effects in vivo. ABSTRACT: GABAA receptor potentiators are commonly used for the treatment of epilepsy, but it is not clear whether targeting distinct GABAA receptor subtypes will have disproportionate benefits over adverse effects. Here we demonstrate that the α2 /α3 selective positive allosteric modulator (PAM) AZD7325 preferentially potentiates hippocampal inhibitory responses at synapses proximal to the soma of CA1 neurons. The effect of AZD7325 on synaptic responses was more prominent in mice on the 129S6/SvEvTac background strain, which have been demonstrated to be seizure resistant in the model of Dravet syndrome (Scn1a+/- ), and in which the α2 GABAA receptor subunits are expressed at higher levels relative to in the seizure prone C57BL/6J background strain. Consistent with this, treatment of Scn1a+/- mice with AZD7325 elevated the temperature threshold for hyperthermia-induced seizures without apparent sedative effects. Our results in a model system indicate that selectively targeting α2 is a potential therapeutic option for Dravet syndrome.


Asunto(s)
Epilepsias Mioclónicas/dietoterapia , Moduladores del GABA/farmacología , Compuestos Heterocíclicos con 2 Anillos/farmacología , Receptores de GABA-A/metabolismo , Convulsiones/prevención & control , Animales , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Epilepsias Mioclónicas/metabolismo , Fiebre , Regulación de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Subunidades de Proteína
7.
J Neurosci ; 37(47): 11298-11310, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29038238

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder that is a leading cause of inherited intellectual disability, and the most common known cause of autism spectrum disorder. FXS is broadly characterized by sensory hypersensitivity and several developmental alterations in synaptic and circuit function have been uncovered in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABA-mediated neurotransmission and fast-spiking (FS) GABAergic interneurons are central to cortical circuit development in the neonate. Here we demonstrate that there is a delay in the maturation of the intrinsic properties of FS interneurons in the sensory cortex, and a deficit in the formation of excitatory synaptic inputs on to these neurons in neonatal Fmr1 KO mice. Both these delays in neuronal and synaptic maturation were rectified by chronic administration of a TrkB receptor agonist. These results demonstrate that the maturation of the GABAergic circuit in the sensory cortex is altered during a critical developmental period due in part to a perturbation in BDNF-TrkB signaling, and could contribute to the alterations in cortical development underlying the sensory pathophysiology of FXS.SIGNIFICANCE STATEMENT Fragile X (FXS) individuals have a range of sensory related phenotypes, and there is growing evidence of alterations in neuronal circuits in the sensory cortex of the mouse model of FXS (Fmr1 KO). GABAergic interneurons are central to the correct formation of circuits during cortical critical periods. Here we demonstrate a delay in the maturation of the properties and synaptic connectivity of interneurons in Fmr1 KO mice during a critical period of cortical development. The delays both in cellular and synaptic maturation were rectified by administration of a TrkB receptor agonist, suggesting reduced BDNF-TrkB signaling as a contributing factor. These results provide evidence that the function of fast-spiking interneurons is disrupted due to a deficiency in neurotrophin signaling during early development in FXS.


Asunto(s)
Potenciales Postsinápticos Excitadores , Síndrome del Cromosoma X Frágil/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Receptor trkB/metabolismo , Animales , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/fisiología , Interneuronas/citología , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Receptor trkB/agonistas , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/fisiología
8.
J Neurosci ; 36(19): 5228-40, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170121

RESUMEN

UNLABELLED: Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon "aberrant motor learning" and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. ß2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of ß2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and ß2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of ß2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. SIGNIFICANCE STATEMENT: Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of ß2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of function and/or receptor expression of ß2-containing nicotinic receptors alters presynaptic and postsynaptic striatal signaling to protect against aberrant motor learning. Moreover, these results suggest that cNIC treatment may alleviate motor symptoms and/or delay the deterioration of motor function in movement disorders by blocking aberrant motor learning.


Asunto(s)
Dopamina/deficiencia , Aprendizaje/efectos de los fármacos , Actividad Motora , Nicotina/farmacología , Receptores de Dopamina D2/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotina/administración & dosificación , Agonistas Nicotínicos/farmacología , Potenciales Sinápticos
9.
J Neurosci ; 35(16): 6544-53, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25904804

RESUMEN

Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2(-/-) mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2(-/-) mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus.


Asunto(s)
Región CA3 Hipocampal/fisiología , AMP Cíclico/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Transmisión Sináptica/fisiología , Animales , Región CA3 Hipocampal/efectos de los fármacos , Colforsina/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Noqueados , Fibras Musgosas del Hipocampo/efectos de los fármacos , Fibras Musgosas del Hipocampo/fisiología , Terminales Presinápticos/metabolismo , Transmisión Sináptica/efectos de los fármacos
10.
J Neurosci ; 34(2): 446-50, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24403144

RESUMEN

Delays in synaptic and neuronal development in the cortex are key hallmarks of fragile X syndrome, a prevalent neurodevelopmental disorder that causes intellectual disability and sensory deficits and is the most common known cause of autism. Previous studies have demonstrated that the normal progression of plasticity and synaptic refinement during the critical period is altered in the cortex of fragile X mice. Although the disruptions in excitatory synapses are well documented in fragile X, there is less known about inhibitory neurotransmission during the critical period. GABAergic transmission plays a crucial trophic role in cortical development through its early depolarizing action. At the end of cortical critical period, response properties of GABA transform into their mature hyperpolarizing type due to developmental changes in intracellular chloride homeostasis. We found that the timing of the switch from depolarizing to hyperpolarizing GABA is delayed in the cortex of fragile X mice and there is a concurrent alteration in the expression of the neuronal chloride cotransporter NKCC1 that promotes the accumulation of intracellular chloride. Disruption of the trophic effects of GABA during cortical development could contribute to the altered trajectory of synaptic maturation in fragile X syndrome.


Asunto(s)
Síndrome del Cromosoma X Frágil/metabolismo , Neurogénesis/fisiología , Corteza Somatosensorial/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Western Blotting , Período Crítico Psicológico , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Reacción en Cadena en Tiempo Real de la Polimerasa , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
11.
J Neurosci ; 34(50): 16762-73, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25505329

RESUMEN

Metaplasticity regulates the threshold for modification of synaptic strength and is an important regulator of learning rules; however, it is not known whether these cellular mechanisms for homeostatic regulation of synapses contribute to particular forms of learning. Conditional ablation of mGluR5 in CA1 pyramidal neurons resulted in the inability of low-frequency trains of afferent activation to prime synapses for subsequent theta burst potentiation. Priming-induced metaplasticity requires mGluR5-mediated mobilization of endocannabinoids during the priming train to induce long-term depression of inhibition (I-LTD). Mice lacking priming-induced plasticity had no deficit in spatial reference memory tasks, but were impaired in an associative task with a temporal component. Conversely, enhancing endocannabinoid signaling facilitated temporal associative memory acquisition and, after training animals in these tasks, ex vivo I-LTD was partially occluded and theta burst LTP was enhanced. Together, these results suggest a link between metaplasticity mechanisms in the hippocampus and the formation of temporal associative memories.


Asunto(s)
Aprendizaje por Asociación/fisiología , Región CA1 Hipocampal/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Receptor del Glutamato Metabotropico 5/fisiología , Animales , Femenino , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Factores de Tiempo
12.
Hum Mol Genet ; 21(10): 2143-56, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22328088

RESUMEN

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and results from the loss of the fragile X mental retardation protein (FMRP). Many fragile X-related cognitive and behavioral features emerge during childhood and are associated with abnormal synaptic and cellular organization of the cerebral cortex. Identifying the roles of FMRP in cortical development will provide a basis for understanding the pathogenesis of the syndrome. However, how the loss of FMRP influences the developmental trajectory of cortical maturation remains unclear. We took advantage of the stereotyped and well-characterized development of the murine primary somatosensory cortex to examine cortical maturation during a time-window that corresponds to late embryonic and early postnatal development in the human. In the Fmr1 knockout mouse, we find a delay in somatosensory map formation, alterations in the morphology profile of dendrites and spines of layer 4 neurons and a decrease in the synaptic levels of proteins involved in glutamate receptor signaling at times corresponding to the highest levels of FMRP expression. In contrast, cortical arealization, synaptic density in layer 4 and early postnatal regulation of mRNAs encoding synaptic proteins are not altered in Fmr1 knockout mice. The specificity of the developmental delay in Fmr1 knockout mice indicates that the loss of FMRP does not result in a general stalling of cerebral cortex maturation. Instead, our results suggest that inaccurate timing of developmental processes caused by the loss of FMRP may lead to alterations in neural circuitry that underlie behavioral and cognitive dysfunctions associated with FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Corteza Somatosensorial/metabolismo , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Ratones , Ratones Noqueados , Microscopía Electrónica , ARN Mensajero/metabolismo
13.
Learn Mem ; 20(8): 438-45, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23869026

RESUMEN

Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5 signaling is required for different forms of adaptive learning. Here, we tested whether ADX47273, a selective positive allosteric modulator (PAM) of mGluR5, can enhance adaptive learning in mice. We found that systemic administration of the ADX47273 enhanced reversal learning in the Morris Water Maze, an adaptive task. In addition, we found that ADX47273 had no effect on single-session and multi-session extinction, but administration of ADX47273 after a single retrieval trial enhanced subsequent fear extinction learning. Together these results demonstrate a role for mGluR5 signaling in adaptive learning, and suggest that mGluR5 PAMs represent a viable strategy for treatment of maladaptive learning and for improving behavioral flexibility.


Asunto(s)
Adaptación Psicológica/fisiología , Extinción Psicológica/fisiología , Aprendizaje por Laberinto/fisiología , Oxadiazoles/farmacología , Piperidinas/farmacología , Receptor del Glutamato Metabotropico 5/fisiología , Adaptación Psicológica/efectos de los fármacos , Animales , Extinción Psicológica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor del Glutamato Metabotropico 5/efectos de los fármacos
14.
Biol Psychiatry ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950809

RESUMEN

BACKGROUND: Exaggerated responses to sensory stimuli, a hallmark of Fragile X syndrome (FXS), contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of FXS. Recent studies in Fmr1 KO mice have demonstrated differences in activity of cortical interneurons and a delayed switch in the polarity of GABA signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide, could rescue synaptic circuit phenotypes in primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS: We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS: We demonstrate that layer (L) 2/3 pyramidal neurons in S1 of Fmr1 KO mice show a higher frequency of synchronous events at postnatal day (P) 6 compared to wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (P5-P14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of L2/3 neurons in S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS: This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the FDA-approved diuretic bumetanide.

15.
Cell Rep ; 43(2): 113680, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38241148

RESUMEN

Extracellular vesicles (EVs) facilitate intercellular communication by transferring cargo between cells in a variety of tissues. However, how EVs achieve cell-type-specific intercellular communication is still largely unknown. We found that Notch1 and Notch2 proteins are expressed on the surface of neuronal EVs that have been generated in response to neuronal excitatory synaptic activity. Notch ligands bind these EVs on the neuronal plasma membrane, trigger their internalization, activate the Notch signaling pathway, and drive the expression of Notch target genes. The generation of these neuronal EVs requires the endosomal sorting complex required for transport-associated protein Alix. Adult Alix conditional knockout mice have reduced hippocampal Notch signaling activation and glutamatergic synaptic protein expression. Thus, EVs facilitate neuron-to-neuron communication via the Notch receptor-ligand system in the brain.


Asunto(s)
Vesículas Extracelulares , Neuronas , Animales , Ratones , Ligandos , Transporte de Proteínas , Transducción de Señal , Ratones Noqueados
16.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712260

RESUMEN

Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Although considerable attention has been paid to the mechanisms underlying synaptic strengthening and new learning, little scrutiny has been given to those involved in the attenuation of synaptic strength that attends suppression of a previously learned association. Our studies revealed a novel, non-Hebbian, long-term, postsynaptic depression of glutamatergic SPN synapses induced by interneuronal nitric oxide (NO) signaling (NO-LTD) that was preferentially engaged at quiescent synapses. This form of plasticity was gated by local Ca 2+ influx through CaV1.3 Ca 2+ channels and stimulation of phosphodiesterase 1 (PDE1), which degraded cyclic guanosine monophosphate (cGMP) and blunted NO signaling. Consistent with this model, mice harboring a gain-of-function mutation in the gene coding for the pore-forming subunit of CaV1.3 channels had elevated depolarization-induced dendritic Ca 2+ entry and impaired NO-LTD. Extracellular uncaging of glutamate and intracellular uncaging of cGMP suggested that this Ca 2+ -dependent regulation of PDE1 activity allowed for local regulation of dendritic NO signaling. This inference was supported by simulation of SPN dendritic integration, which revealed that dendritic spikes engaged PDE1 in a branch-specific manner. In a mouse model of Parkinson's disease (PD), NO-LTD was absent not because of a postsynaptic deficit in NO signaling machinery, but rather due to impaired interneuronal NO release. Re-balancing intrastriatal neuromodulatory signaling in the PD model restored NO release and NO-LTD. Taken together, these studies provide novel insights into the mechanisms governing NO-LTD in SPN and its role in psychomotor disorders, like PD.

17.
Proc Natl Acad Sci U S A ; 107(20): 9412-7, 2010 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-20439731

RESUMEN

AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate) recep-tors desensitize rapidly and completely in the continued presence of their endogenous ligand glutamate; however, it is not clear what role AMPA receptor desensitization plays in the brain. We generated a knock-in mouse in which a single amino acid residue, which controls desensitization, was mutated in the GluA2 (GluR2) receptor subunit (GluA2(L483Y)). This mutation was homozygous lethal. However, mice carrying a single mutated allele, GluA2(L483Y/wt), survived past birth, but displayed severe and progressive neurological deficits including seizures and, ultimately, increased mortality. The expression of the AMPA receptor subunits GluA1 and GluA2 was decreased, whereas NMDA receptor protein expression was increased in GluA2(L483Y/wt) mice. Despite this, basal synaptic transmission and plasticity in the hippocampus were largely unaffected, suggesting that neurons preferentially target receptors to synapses to normalize synaptic weight. We found no gross neuroanatomical alterations in GluA2(L483Y/wt) mice. Moreover, there was no accumulation of AMPA receptor subunits in intracellular compartments, suggesting that folding and assembly of AMPA receptors are not affected by this mutation. Interestingly, EPSC paired pulse ratios in the CA1 were enhanced without a change in synaptic release probability, demonstrating that postsynaptic receptor properties can contribute to facilitation. The dramatic phenotype observed in this study by the introduction of a single amino acid change demonstrates an essential role in vivo for AMPA receptor desensitization.


Asunto(s)
Hipocampo/metabolismo , Enfermedades del Sistema Nervioso/genética , Fenotipo , Receptores AMPA/genética , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Cartilla de ADN/genética , Electrofisiología , Técnicas de Sustitución del Gen , Hipocampo/patología , Immunoblotting , Inmunohistoquímica , Ratones , Mutación/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Nat Neurosci ; 26(8): 1417-1428, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37443282

RESUMEN

Elevated dopamine transmission in psychosis is assumed to unbalance striatal output through D1- and D2-receptor-expressing spiny-projection neurons (SPNs). Antipsychotic drugs are thought to re-balance this output by blocking D2 receptors (D2Rs). In this study, we found that amphetamine-driven dopamine release unbalanced D1-SPN and D2-SPN Ca2+ activity in mice, but that antipsychotic efficacy was associated with the reversal of abnormal D1-SPN, rather than D2-SPN, dynamics, even for drugs that are D2R selective or lacking any dopamine receptor affinity. By contrast, a clinically ineffective drug normalized D2-SPN dynamics but exacerbated D1-SPN dynamics under hyperdopaminergic conditions. Consistent with antipsychotic effect, selective D1-SPN inhibition attenuated amphetamine-driven changes in locomotion, sensorimotor gating and hallucination-like perception. Notably, antipsychotic efficacy correlated with the selective inhibition of D1-SPNs only under hyperdopaminergic conditions-a dopamine-state-dependence exhibited by D1R partial agonism but not non-antipsychotic D1R antagonists. Our findings provide new insights into antipsychotic drug mechanism and reveal an important role for D1-SPN modulation.


Asunto(s)
Antipsicóticos , Ratones , Animales , Antipsicóticos/farmacología , Dopamina , Cuerpo Estriado/fisiología , Neuronas/fisiología , Interneuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/fisiología
19.
STAR Protoc ; 3(4): 101907, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36595933

RESUMEN

Although it is now known that certain neurons can produce, store, and release multiple neurotransmitters, their locations, abundance, and functions remain elusive. We developed intersectional genetic strategies to identify multi-transmitter neurons based on the expression of neurotransmitter-specific genes. Here we present our procedures for whole-brain mapping of GABA/glutamate co-releasing neurons. We also detail our technique for labeling GABA/glutamate neurons in specific brain regions with adeno-associated virus (AAV). Our protocol can be readily extended to other types of multi-transmitter neurons. For complete details on the use and execution of this protocol, please refer to Xu et al. (2022).1.


Asunto(s)
Ácido Glutámico , Neuronas , Ratones , Animales , Neuronas/metabolismo , Ácido Glutámico/metabolismo , Encéfalo/metabolismo , Ácido gamma-Aminobutírico/metabolismo
20.
Cell Rep ; 40(1): 111036, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793636

RESUMEN

Recent developments in intersectional strategies have greatly advanced our ability to precisely target brain cell types based on unique co-expression patterns. To accelerate the application of intersectional genetics, we perform a brain-wide characterization of 13 Flp and tTA mouse driver lines and selected seven for further analysis based on expression of vesicular neurotransmitter transporters. Using selective Cre driver lines, we created more than 10 Cre/tTA combinational lines for cell type targeting and circuit analysis. We then used VGLUT-Cre/VGAT-Flp combinational lines to identify and map 30 brain regions containing neurons that co-express vesicular glutamate and gamma-aminobutyric acid (GABA) transporters, followed by tracing their projections with intersectional viral vectors. Focusing on the lateral habenula (LHb) as a target, we identified glutamatergic, GABAergic, or co-glutamatergic/GABAergic innervations from ∼40 brain regions. These data provide an important resource for the future application of intersectional strategies and expand our understanding of the neuronal subtypes in the brain.


Asunto(s)
Habénula , Neuronas , Animales , Habénula/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA