Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Eukaryot Gene Expr ; 34(6): 37-60, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912962

RESUMEN

Regenerative dental medicine continuously expands to improve treatments for prevalent clinical problems in dental and oral medicine. Stem cell based translational opportunities include regenerative therapies for tooth restoration, root canal therapy, and inflammatory processes (e.g., periodontitis). The potential of regenerative approaches relies on the biological properties of dental stem cells. These and other multipotent somatic mesenchymal stem cell (MSC) types can in principle be applied as either autologous or allogeneic sources in dental procedures. Dental stem cells have distinct developmental origins and biological markers that determine their translational utility. Dental regenerative medicine is supported by mechanistic knowledge of the molecular pathways that regulate dental stem cell growth and differentiation. Cell fate determination and lineage progression of dental stem cells is regulated by multiple cell signaling pathways (e.g., WNTs, BMPs) and epigenetic mechanisms, including DNA modifications, histone modifications, and non-coding RNAs (e.g., miRNAs and lncRNAs). This review also considers a broad range of novel approaches in which stem cells are applied in combination with biopolymers, ceramics, and composite materials, as well as small molecules (agonistic or anti-agonistic ligands) and natural compounds. Materials that mimic the microenvironment of the stem cell niche are also presented. Promising concepts in bone and dental tissue engineering continue to drive innovation in dental and non-dental restorative procedures.


Asunto(s)
Materiales Biocompatibles , Medicina Regenerativa , Humanos , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Células Madre/citología , Células Madre/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Animales
2.
Cytotherapy ; 24(5): 456-472, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35227601

RESUMEN

Therapies using mesenchymal stromal cells (MSCs) to treat immune and inflammatory conditions are now at an exciting stage of development, with many MSC-based products progressing to phase II and III clinical trials. However, a major bottleneck in the clinical translation of allogeneic MSC therapies is the variable immunomodulatory properties of MSC products due to differences in their tissue source, donor heterogeneity and processes involved in manufacturing and banking. This variable functionality of MSC products likely contributes to the substantial inconsistency observed in the clinical outcomes of phase III trials of MSC therapies; several trials have failed to reach the primary efficacy endpoint. In this review, we discuss various strategies to consistently maintain or enhance the immunomodulatory potency of MSCs during ex vivo expansion, which will enable the manufacture of allogeneic MSC banks that have high potency and low variability. Biophysical and biochemical priming strategies, the use of culture additives such as heparan sulfates, and genetic modification can substantially enhance the immunomodulatory properties of MSCs during in vitro expansion. Furthermore, robust donor screening, the use of biomarkers to select for potent MSC subpopulations, and rigorous quality testing to improve the release criteria for MSC banks have the potential to reduce batch-to-batch heterogeneity and enhance the clinical efficacy of the final MSC product. Machine learning approaches to develop predictive models of individual patient response can enable personalized therapies and potentially establish correlations between in vitro potency measurements and clinical outcomes in human trials.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Humanos , Inmunomodulación
3.
J Biol Chem ; 295(23): 7877-7893, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32332097

RESUMEN

Bone-stimulatory therapeutics include bone morphogenetic proteins (e.g. BMP2), parathyroid hormone, and antibody-based suppression of WNT antagonists. Inhibition of the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is both bone anabolic and osteoprotective. EZH2 inhibition stimulates key components of bone-stimulatory signaling pathways, including the BMP2 signaling cascade. Because of high costs and adverse effects associated with BMP2 use, here we investigated whether BMP2 dosing can be reduced by co-treatment with EZH2 inhibitors. Co-administration of BMP2 with the EZH2 inhibitor GSK126 enhanced differentiation of murine (MC3T3) osteoblasts, reflected by increased alkaline phosphatase activity, Alizarin Red staining, and expression of bone-related marker genes (e.g. Bglap and Phospho1). Strikingly, co-treatment with BMP2 (10 ng/ml) and GSK126 (5 µm) was synergistic and was as effective as 50 ng/ml BMP2 at inducing MC3T3 osteoblastogenesis. Similarly, the BMP2-GSK126 co-treatment stimulated osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells, reflected by induction of key osteogenic markers (e.g. Osterix/SP7 and IBSP). A combination of BMP2 (300 ng local) and GSK126 (5 µg local and 5 days of 50 mg/kg systemic) yielded more consistent bone healing than single treatments with either compound in a mouse calvarial critical-sized defect model according to results from µCT, histomorphometry, and surgical grading of qualitative X-rays. We conclude that EZH2 inhibition facilitates BMP2-mediated induction of osteogenic differentiation of progenitor cells and maturation of committed osteoblasts. We propose that epigenetic priming, coupled with bone anabolic agents, enhances osteogenesis and could be leveraged in therapeutic strategies to improve bone mass.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Indoles/farmacología , Osteogénesis/efectos de los fármacos , Piridonas/farmacología , Células 3T3 , Animales , Proteína Morfogenética Ósea 2/administración & dosificación , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Indoles/administración & dosificación , Ratones , Osteoblastos/efectos de los fármacos , Piridonas/administración & dosificación
4.
Stem Cells ; 38(9): 1124-1136, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32510174

RESUMEN

Although the application of human mesenchymal stem cells (hMSCs) to repair damaged or diseased tissues has proven relatively effective, both the donor-to-donor variability in ex vivo expansion rates and the maintenance of stemness remain a bottleneck to widespread translation. Previous work from this laboratory stratified donors into those yielding hMSCs with high- or low-growth capacity; global transcriptomic analysis revealed that high-growth-capacity hMSCs were characterized by a loss of the gene encoding glutathione S-transferase theta 1 (GSTT1). These GSTT1-null hMSCs demonstrated increased proliferative rates, clonogenic potential, and longer telomeres compared with low-growth capacity hMSCs that were GSTT1-positive. Thus, this study identifies GSTT1 as a novel genomic DNA biomarker for hMSC scalability.


Asunto(s)
Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Genoma Humano , Células Madre Mesenquimatosas/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Células Clonales , Genotipo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Homocigoto , Humanos , Células Madre Mesenquimatosas/metabolismo , Transcriptoma/genética
5.
Stroke ; 51(9): 2844-2853, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32772683

RESUMEN

BACKGROUND AND PURPOSE: Although VEGF165 (vascular endothelial growth factor-165) is able to enhance both angiogenesis and neurogenesis, it also increases vascular permeability through the blood-brain barrier. Heparan sulfate (HS) sugars play important roles in regulating VEGF bioactivity in the pericellular compartment. Here we asked whether an affinity-purified VEGF165-binding HS (HS7) could augment endogenous VEGF activity during stroke recovery without affecting blood-brain barrier function. METHODS: Both rat brain endothelial cell line 4 and primary rat neural progenitor cells were used to evaluate the potential angiogenic and neurogenic effects of HS7 in vitro. For in vivo experiments, male Sprague-Dawley rats were subjected to 100 minutes of transient focal cerebral ischemia, then treated after 4 days with either PBS or HS7. One week later, infarct volume, behavioral sequelae, immunohistochemical markers of angiogenesis and neural stem cell proliferation were assessed. RESULTS: HS7 significantly enhanced VEGF165-mediated angiogenesis in rat brain endothelial cell line 4 brain endothelial cells, and increased the proliferation and differentiation of primary neural progenitor cells, both via the VEGFR2 (vascular endothelial growth factor receptor 2) pathway. Intracerebroventricular injection of HS7 improved neurological outcome in ischemic rats without changing infarct volumes. Immunostaining of the compromised cerebrum demonstrated increases in collagen IV/Ki67 and nestin/Ki67 after HS7 exposure, consistent with its ability to promote angiogenesis and neurogenesis, without compromising blood-brain barrier integrity. CONCLUSIONS: A VEGF-activating glycosaminoglycan sugar, by itself, is able to enhance endogenous VEGF165 activity during the post-ischemic recovery phase of stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Heparitina Sulfato/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Heparitina Sulfato/administración & dosificación , Infarto de la Arteria Cerebral Media/prevención & control , Inyecciones Intraventriculares , Ataque Isquémico Transitorio/tratamiento farmacológico , Ataque Isquémico Transitorio/fisiopatología , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
Proteomics ; 19(21-22): e1800466, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31197945

RESUMEN

Increasing knowledge of how peptides bind saccharides, and of how saccharides bind peptides, is starting to revolutionize understanding of cell-extracellular matrix relationships. Here, a historical perspective is taken of the relationship between heparan sulfate glycosaminoglycans and how they interact with peptide growth factors in order to both drive and modulate signaling through the appropriate cognate receptors. Such knowledge is guiding the preparation of targeted sugar mimetics that will impact the treatment of many different kinds of diseases, including cancer.


Asunto(s)
Glicómica , Heparitina Sulfato/genética , Péptidos/genética , Proteómica , Matriz Extracelular/genética , Glicosaminoglicanos/genética , Humanos , Neoplasias/genética , Unión Proteica/genética , Transducción de Señal/genética
7.
J Cell Biochem ; 119(7): 5715-5724, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29388702

RESUMEN

Tendon graft healing in bone tunnels for the fixation of intra-articular ligament reconstructions may limit clinical outcome by delaying healing. This study assesses the effects of hydrogel-mediated delivery of bone anabolic growth factors in a validated model of tendon-to-bone tunnel healing. Forty-five Wistar rats were randomly allocated into three groups (BMP2-treated, GSK126-treated, and placebo). All animals underwent a tendon-to-bone tunnel reconstruction. Healing was evaluated at 4 weeks by biomechanical assessment, micro-computed tomography (bone mineral density, bone volume, cross sectional area of bone tunnels), and traditional histology. Adverse events associated with the hydrogel-mediated delivery of drugs were not observed. Results of our biomechanical assessment demonstrated favorable trends in animals treated with bone anabolic factors for energy absorption (P = 0.116) and elongation (P = 0.054), while results for force to failure (P = 0.691) and stiffness (P = 0.404) did not show discernible differences. Cross sectional areas for BMP2-treated animals were reduced, but neither BMP2 nor GSK126 administration altered bone mineral density (P = 0.492) or bone volume in the bone tunnel. These results suggest a novel and positive effect of bone anabolic factors on tendon-to-bone tunnel healing. Histological evaluation confirmed absence of collagen fibers crossing the soft tissue-bone interface indicating immature graft integration as expected at this time point. Our study indicates that hydrogel-mediated delivery of BMP2 and GSK126 appears to be safe and has the potential to enhance tendon-to-bone tunnel healing in ligament reconstructions.


Asunto(s)
Anabolizantes/administración & dosificación , Huesos/citología , Adhesivo de Tejido de Fibrina/administración & dosificación , Tendones/citología , Adhesivos Tisulares/administración & dosificación , Cicatrización de Heridas , Animales , Proteína Morfogenética Ósea 2/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Masculino , Ratas , Ratas Wistar , Tendones/efectos de los fármacos , Tendones/metabolismo , Microtomografía por Rayos X
8.
Angiogenesis ; 21(4): 777-791, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29777314

RESUMEN

Peripheral arterial disease is a major cause of limb loss and its prevalence is increasing worldwide. As most standard-of-care therapies yield only unsatisfactory outcomes, more options are needed. Recent cell- and molecular-based therapies that have aimed to modulate vascular endothelial growth factor-165 (VEGF165) levels have not yet been approved for clinical use due to their uncertain side effects. We have previously reported a heparan sulphate (termed HS7) tuned to avidly bind VEGF165. Here, we investigated the ability of HS7 to promote vascular recovery in a murine hindlimb vascular ischaemia model. HS7 stabilised VEGF165 against thermal and enzyme degradation in vitro, and isolated VEGF165 from serum via affinity-chromatography. C57BL6 mice subjected to unilateral hindlimb ischaemia injury received daily intramuscular injections of respective treatments (n = 8) and were assessed over 3 weeks by laser Doppler perfusion, magnetic resonance angiography, histology and the regain of function. Mice receiving HS7 showed improved blood reperfusion in the footpad by day 7. In addition, they recovered hindlimb blood volume two- to fourfold faster compared to the saline group; the greatest rate of recovery was observed in the first week. Notably, 17% of HS7-treated animals recovered full hindlimb function by day 7, a number that grew to 58% and 100% by days 14 and 21, respectively. This was in contrast to only 38% in the control animals. These results highlight the potential of purified glycosaminoglycan fractions for clinical use following vascular insult, and confirm the importance of harnessing the activity of endogenous pro-healing factors generated at injury sites.


Asunto(s)
Heparitina Sulfato/farmacología , Miembro Posterior , Isquemia/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Heparitina Sulfato/química , Heparitina Sulfato/aislamiento & purificación , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Miembro Posterior/fisiopatología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isquemia/patología , Isquemia/fisiopatología , Ratones , Células RAW 264.7
9.
J Cell Physiol ; 232(3): 566-575, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27291835

RESUMEN

The future of human mesenchymal stem cells (hMSCs) as a successful cell therapy relies on bioprocessing strategies to improve the scalability of these cells without compromising their therapeutic ability. The culture-expansion of hMSCs can be enhanced by supplementation with growth factors, particularly fibroblast growth factor 2 (FGF2). The biological activity of FGF2 is controlled through interactions with heparan sulfate (HS) that facilitates ligand-receptor complex formation. We previously reported on an FGF2-interacting HS variant (termed HS2) isolated from embryonic tissue by anionic exchange chromatography that increased the proliferation and potency of hMSCs. Here, we detail the isolation of an FGF2 affinity-purified HS variant (HS8) using a scalable platform technology previously employed to generate HS variants with increased affinity for BMP-2 or VEGF165 . This process used a peptide sequence derived from the heparin-binding domain of FGF2 as a substrate to affinity-isolate HS8 from a commercially available source of porcine mucosal HS. Our data show that HS8 binds to FGF2 with higher affinity than to FGF1, FGF7, BMP2, PDGF-BB, or VEGF165 . Also, HS8 protects FGF2 from thermal destabilization and increases FGF signaling and hMSC proliferation through FGF receptor 1. Long-term supplementation of cultures with HS8 increased both hMSC numbers and their colony-forming efficiency without adversely affecting the expression of hMSC-related cell surface antigens. This strategy further exemplifies the utility of affinity-purifying HS variants against particular ligands important to the stem cell microenvironment and advocates for their addition as adjuvants for the culture-expansion of hMSCs destined for cellular therapy. J. Cell. Physiol. 232: 566-575, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Secuencia de Aminoácidos , Anticoagulantes/farmacología , Proliferación Celular , Cromatografía de Afinidad , Disacáridos/análisis , Factor Xa/metabolismo , Factor 2 de Crecimiento de Fibroblastos/química , Heparitina Sulfato/aislamiento & purificación , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Péptidos/química , Péptidos/metabolismo , Estabilidad Proteica/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Stem Cells ; 33(6): 1878-91, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25752682

RESUMEN

This study sought to identify critical determinants of mesenchymal stem cell (MSC) potency using in vitro and in vivo attributes of cells isolated from the bone marrow of age- and sex-matched donors. Adherence to plastic was not indicative of potency, yet capacity for long-term expansion in vitro varied considerably between donors, allowing the grouping of MSCs from the donors into either those with high-growth capacity or low-growth capacity. Using this grouping strategy, high-growth capacity MSCs were smaller in size, had greater colony-forming efficiency, and had longer telomeres. Cell-surface biomarker analysis revealed that the International Society for Cellular Therapy (ISCT) criteria did not distinguish between high-growth capacity and low-growth capacity MSCs, whereas STRO-1 and platelet-derived growth factor receptor alpha were preferentially expressed on high-growth capacity MSCs. These cells also had the highest mean expression of the mRNA transcripts TWIST-1 and DERMO-1. Irrespective of these differences, both groups of donor MSCs produced similar levels of key growth factors and cytokines involved in tissue regeneration and were capable of multilineage differentiation. However, high-growth capacity MSCs produced approximately double the volume of mineralized tissue compared to low-growth capacity MSCs when assessed for ectopic bone-forming ability. The additional phenotypic criteria presented in this study when combined with the existing ISCT minimum criteria and working proposal will permit an improved assessment of MSC potency and provide a basis for establishing the quality of MSCs prior to their therapeutic application.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Madre Mesenquimatosas/citología , Animales , Células Cultivadas , Citocinas/metabolismo , Humanos , Ratones , Cicatrización de Heridas/fisiología
12.
Glycobiology ; 25(12): 1491-504, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26306634

RESUMEN

Transforming growth factor-ß1 (TGF-ß1, Uniprot: P01137) is a heparin-binding protein that has been implicated in a number of physiological processes, including the initiation of chondrogenesis by human mesenchymal stem cells (hMSCs). Here, we identify the molecular features in the protein and in heparin required for binding and their effects on the potentiation of TGF-ß1's activity on hMSCs. Using a proteomics "Protect and Label" approach, lysines K291, K304, K309, K315, K338, K373, K375 and K388 were identified as being directly involved in binding heparin (Data are available via ProteomeXchange with identifier PXD002772). Competition assays in an optical biosensor demonstrated that TGF-ß1 does require N- and 6-O-sulfate groups for binding but that 2-O-sulfate groups are unlikely to underpin the interaction. Heparin-derived oligosaccharides as short as degree of polymerization (dp) 4 have a weak ability to compete for TGF-ß1 binding to heparin, which increases with the length of the oligosaccharide to reach a maximum between dp18 and dp24. In cell-based assays, heparin, 2-O-, 6-O- and N-desulfated re-N-acetylated heparin and oligosaccharides 14-24 saccharides (dp14-24) in length all increased the phosphorylation of mothers against decapentaplegic homolog 2 (SMAD2) after 6 h of stimulation with TGF-ß1. The results provide the structural basis for a model of heparin/heparan sulfate binding to TGF-ß1 and demonstrate that the features in the polysaccharide required for binding are not identical to those required for sustaining the signaling by TGF-ß1 in hMSCs.


Asunto(s)
Heparina/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/química , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Células Cultivadas , Heparina/química , Humanos , Células Madre Mesenquimatosas/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
13.
Mol Cancer ; 14: 136, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26201468

RESUMEN

BACKGROUND: Aberrant activation of fibroblast growth factor receptors (FGFRs) deregulates cell proliferation and promotes cell survival, and may predispose to tumorigenesis. Therefore, selective inactivation of FGFRs is an important strategy for cancer therapy. Here as a proof-of-concept study, we developed a FGFR1 neutralizing antisera, IMB-R1, employing a novel strategy aimed at preventing the access of essential heparan sulfate (HS) co-receptors to the heparin-binding domain on FGFR1. METHODS: The mRNA and protein expression level of FGFR1 and other FGFRs were examined in several lines of breast cancer and osteosarcoma cells and corresponding normal cells using Taqman real-time quantitative PCR and Western blot analysis. The specificity of IMB-R1 against FGFR1 was assessed with various ELISA-based approaches and Receptor Tyrosine Kinase array. Proliferation assay and apoptosis analysis were performed to assess the effect of IMB-R1 on cancer cell growth and apoptosis, respectively, in comparison with known FGFR1 inhibitors. The IMB-R1 induced alteration of intracellular signaling and gene expression were analysed using Western blot and microarray approaches. Immunohistochemical staining of FGFR1 using IMB-R1 were carried out in different cancer tissues from clinical patients. Throughout the study, statistical differences were determined by Student's t test where appropriate and reported when a p value was less than 0.05. RESULTS: We demonstrate that IMB-R1 is minimally cross-reactive for other FGFRs, and that it potently and specifically inhibits binding of heparin to FGFR1. Furthermore, IMB-R1 blocks the interaction of FGF2 with FGFR1, the kinase activity of FGFR1 and activation of intracellular FGFR signaling. Cancer cells treated with IMB-R1 displayed impaired FGF2 signaling, were unable to grow and instead underwent apoptosis. IMB-R1-induced cell death correlated with a disruption of antioxidative defense networks and increased expression of several tumor suppressors and apoptotic proteins, including p53. Immunostaining with IMB-R1 was stronger in human cancer tissues in which the FGFR1 gene is amplified. CONCLUSION: Our study suggests that blocking HS interaction with the heparin-binding domains of FGFR1 inhibited cancer cell growth, which can be an attractive strategy to inactivate cancer-related heparin-binding proteins.


Asunto(s)
Antineoplásicos/farmacología , Heparina/metabolismo , Dominios y Motivos de Interacción de Proteínas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Anticuerpos Monoclonales/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Biopsia , Proliferación Celular/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/efectos de los fármacos
14.
J Biol Chem ; 288(29): 21307-21319, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23720736

RESUMEN

Osteosarcoma (OS) is a primary bone tumor that is most prevalent during adolescence. RUNX2, which stimulates differentiation and suppresses proliferation of osteoblasts, is deregulated in OS. Here, we define pathological roles of RUNX2 in the etiology of OS and mechanisms by which RUNX2 expression is stimulated. RUNX2 is often highly expressed in human OS biopsies and cell lines. Small interference RNA-mediated depletion of RUNX2 inhibits growth of U2OS OS cells. RUNX2 levels are inversely linked to loss of p53 (which predisposes to OS) in distinct OS cell lines and osteoblasts. RUNX2 protein levels decrease upon stabilization of p53 with the MDM2 inhibitor Nutlin-3. Elevated RUNX2 protein expression is post-transcriptionally regulated and directly linked to diminished expression of several validated RUNX2 targeting microRNAs in human OS cells compared with mesenchymal progenitor cells. The p53-dependent miR-34c is the most significantly down-regulated RUNX2 targeting microRNAs in OS. Exogenous supplementation of miR-34c markedly decreases RUNX2 protein levels, whereas 3'-UTR reporter assays establish RUNX2 as a direct target of miR-34c in OS cells. Importantly, Nutlin-3-mediated stabilization of p53 increases expression of miR-34c and decreases RUNX2. Thus, a novel p53-miR-34c-RUNX2 network controls cell growth of osseous cells and is compromised in OS.


Asunto(s)
Neoplasias Óseas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , MicroARNs/metabolismo , Osteosarcoma/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Regulación hacia Abajo/genética , Regulación hacia Abajo/efectos de la radiación , Rayos gamma , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Ratones , Osteosarcoma/genética , Osteosarcoma/patología , Estabilidad Proteica/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/deficiencia
15.
J Cell Biochem ; 115(5): 967-76, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24357546

RESUMEN

Heparan sulfate proteoglycans (HSPGs) are key components of the extracellular matrix that mediate cell proliferation, invasion, and cellular signaling. The biological functions of HSPGs are linked to their co-stimulatory effects on extracellular ligands (e.g., WNTs) and the resulting activation of transcription factors that control mammalian development but also associated with tumorigenesis. We examined the expression profile of HSPG core protein syndecans (SDC1-4) and glypicans (GPC1-6) along with the enzymes that initiate or modify their glycosaminoglycan chains in human breast cancer (HBC) epithelial cells. Gene expression in relation to cell proliferation was examined in the HBC cell lines MCF-7 and MDA-MB-231 following treatment with the HS agonist heparin. Heparin increased gene expression of chain initiation and modification enzymes including EXT1 and NDST1, as well as core proteins SDC2 and GPC6. With HS/Wnt interactions established, we next investigated WNT pathway components and observed that increased proliferation of the more invasive MDA-MB-231 cells is associated with activation of the Wnt signaling pathway. Specifically, there was substantial upregulation (>5-fold) of AXIN1, WNT4A, and MYC in MDA-MB-231 but not in MCF-7 cells. The changes in gene expression observed for HSPG core proteins and related enzymes along with the associated Wnt signaling components suggest coordinated interactions. The influence of HSPGs on cellular proliferation and invasive potential of breast cancer epithelial cells are cell and niche specific. Further studies on the interactions between HSPGs and WNT ligands may yield clinically relevant molecular targets, as well as new biomarkers for characterization of breast cancer progression.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/efectos de los fármacos , Proteoglicanos de Heparán Sulfato/biosíntesis , Vía de Señalización Wnt/genética , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteoglicanos de Heparán Sulfato/genética , Heparina/administración & dosificación , Humanos , Células MCF-7 , Vía de Señalización Wnt/efectos de los fármacos
16.
J Cell Biochem ; 115(10): 1816-28, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24905804

RESUMEN

Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1, and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement, and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (>10-fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while upregulating WNT-related genes (WISP2, SFRP2, and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic, and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility.


Asunto(s)
Tejido Adiposo/citología , Condrogénesis/genética , Células Madre Mesenquimatosas/citología , Osteogénesis/genética , Adipogénesis/genética , Secuencia de Bases , Comunicación Celular/genética , Puntos de Control del Ciclo Celular/genética , Diferenciación Celular , Proliferación Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos , Replicación del ADN/genética , Matriz Extracelular/genética , Citometría de Flujo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunofenotipificación , Factor 4 Similar a Kruppel , Proteínas de la Membrana/metabolismo , Mitosis/genética , Análisis de Secuencia de ARN , Antígenos Thy-1/biosíntesis
17.
Biochem Soc Trans ; 42(3): 703-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24849240

RESUMEN

Most research strategies for cartilage tissue engineering use extended culture with complex media loaded with costly GFs (growth factors) to drive tissue assembly and yet they result in the production of cartilage with inferior mechanical and structural properties compared with the natural tissue. Recent evidence suggests that GAGs (glycosaminoglycans) incorporated into tissue engineering scaffolds can sequester and/or activate GFs and thereby more effectively mimic the natural ECM (extracellular matrix). Such approaches may have potential for the improvement of cartilage engineering. However, natural GAGs are structurally complex and heterogeneous, making structure-function relationships hard to determine and clinical translation difficult. Importantly, subfractions of GAGs with specific chain lengths and sulfation patterns have been shown to activate key signalling processes during stem cell differentiation. In addition, recently, GAGs have been bound to synthetic biomaterials, such as electrospun scaffolds and hydrogels, in biologically active conformations, and methods to purify and select affinity-matched GAGs for specific GFs have also been developed. The identification and use of specific GAG moieties to promote chondrogenesis is therefore an exciting new avenue of research. Combining these with synthetic biomaterials may allow a more effective mimicry of the natural ECM, reduction in the need for expensive GFs, and perhaps the deposition of an articular cartilage-like matrix in a clinically relevant manner.


Asunto(s)
Cartílago/fisiología , Linaje de la Célula , Glicosaminoglicanos/fisiología , Regeneración , Cartílago/citología , Cartílago/metabolismo , Glicosaminoglicanos/metabolismo , Humanos
18.
Stem Cells ; 31(12): 2724-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23939995

RESUMEN

Signaling through fibroblast growth factor receptor one (FGFR1) is a known inducer of proliferation in both embryonic and human adult mesenchymal stem cells (hMSCs) and positively regulates maintenance of stem cell viability. Leveraging the mitogenic potential of FGF2/FGFR1 signaling in stem cells for therapeutic applications necessitates a mechanistic understanding of how this receptor stimulates cell cycle progression. Using small interfering RNA (siRNA) depletion, antibody-inhibition, and small molecule inhibition, we establish that FGFR1 activity is rate limiting for self-renewal of hMSCs. We show that FGFR1 promotes stem cell proliferation through multiple mechanisms that unite to antagonize cyclin-dependent kinase (CDK) inhibitors. FGFR1 not only stimulates c-Myc to suppress transcription of the CDK inhibitors p21(Waf1) and p27(Kip1), thus promoting cell cycle progression but also increases the activity of protein kinase B (AKT) and the level of S-phase kinase-associated protein 2 (Skp2), resulting in the nuclear exclusion and reduction of p21(Waf1). The in vivo importance of FGFR1 signaling for the control of proliferation in mesenchymal progenitor populations is underscored by defects in ventral mesoderm formation during development upon inhibition of its signaling. Collectively, these studies demonstrate that FGFR1 signaling mediates the continuation of MSC growth and establishes a receptor target for enhancing the expansion of mesenchymal progenitors while maintaining their multilineage potential.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Ciclo Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Fase G1/fisiología , Humanos , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Fase S/fisiología , Transducción de Señal , Xenopus laevis
19.
Carbohydr Polym ; 333: 121979, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494232

RESUMEN

Heparan sulfate (HS) is a glycosaminoglycan (GAG) found throughout nature and is involved in a wide range of functions including modulation of cell signalling via sequestration of growth factors. Current consensus is that the specificity of HS motifs for protein binding are individual for each protein. Given the structural complexity of HS the synthesis of libraries of these compounds to probe this is not trivial. Herein we present the synthesis of an HS decamer, the design of which was undertaken rationally from previously published data for HS binding to the growth factor BMP-2. The biological activity of this HS decamer was assessed in vitro, showing that it had the ability to both bind BMP-2 and increase its thermal stability as well as enhancing the bioactivity of BMP-2 in vitro in C2C12 cells. At the same time no undesired anticoagulant effect was observed. This decamer was then analysed in vivo in a rabbit model where higher bone formation, bone mineral density (BMD) and trabecular thickness were observed over an empty defect or collagen implant alone. This indicated that the HS decamer was effective in promoting bone regeneration in vivo.


Asunto(s)
Glicosaminoglicanos , Heparitina Sulfato , Animales , Conejos , Heparitina Sulfato/química , Osteogénesis , Unión Proteica , Regeneración Ósea , Péptidos y Proteínas de Señalización Intercelular/metabolismo
20.
Sci Rep ; 13(1): 11774, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479738

RESUMEN

It is challenging to regenerate periodontal tissues fully. We have previously reported a heparan sulfate variant with enhanced affinity for bone morphogenetic protein-2, termed HS3, that enhanced periodontal tissue regeneration in a rodent model. Here we seek to transition this work closer to the clinic and investigate the efficacy of the combination HS3 collagen device in a non-human primate (NHP) periodontitis model. Wire-induced periodontitis was generated in ten Macaca fascicularis, and defects were treated with Emdogain or collagen (CollaPlug) loaded with (1) distilled water, (2) HS low (36 µg of HS3), or (3) HS high (180 µg of HS3) for 3 months. At the endpoint, microscopic assessment showed significantly less epithelial down-growth, greater alveolar bone filling, and enhanced cementum and periodontal ligament regeneration following treatment with the HS-collagen combination devices. When evaluated using a periodontal regeneration assessment score (PRAS) on a scale of 0-16, collagen scored 6.78 (± 2.64), Emdogain scored 10.50 (± 1.73) and HS low scored 10.40 (± 1.82). Notably, treatment with HS high scored 12.27 (± 2.20), while healthy control scored 14.80 (± 1.15). This study highlights the efficacy of an HS-collagen device for periodontal regeneration in a clinically relevant NHP periodontitis model and warrants its application in clinical trials.


Asunto(s)
Instituciones de Atención Ambulatoria , Colágeno , Animales , Macaca fascicularis , Heparitina Sulfato , Ligamento Periodontal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA