Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 295(8): 2407-2420, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31929109

RESUMEN

Class 3 mutations in B-Raf proto-oncogene, Ser/Thr kinase (BRAF), that result in kinase-impaired or kinase-dead BRAF have the highest mutation frequency in BRAF gene in lung adenocarcinoma. Several studies have reported that kinase-dead BRAF variants amplify mitogen-activated protein kinase (MAPK) signaling by dimerizing with and activating WT C-Raf proto-oncogene, Ser/Thr kinase (CRAF). However, the structural and functional principles underlying their activation remain elusive. Herein, using cell biology and various biochemical approaches, we established that variant BRAFD594G, a kinase-dead representative of class 3 mutation-derived BRAF variants, has a higher dimerization potential as compared with WT BRAF. Molecular dynamics simulations uncovered that the D594G substitution orients the αC-helix toward the IN position and extends the activation loop within the kinase domain, shifting the equilibrium toward the active, dimeric conformation, thus priming BRAFD594G as an effective allosteric activator of CRAF. We found that B/CRAF heterodimers are the most thermodynamically stable RAF dimers, suggesting that RAF heterodimers, and not homodimers, are the major players in determining the amplitude of MAPK signaling in cells. Additionally, we show that BRAFD594G:CRAF heterodimers bypass autoinhibitory P-loop phosphorylation, which might contribute to longer duration of MAPK pathway signaling in cancer cells. Last, we propose that the dimer interface of the BRAFD594G:CRAF heterodimer may represent a promising target in the design of novel anticancer therapeutics.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas 14-3-3/metabolismo , Adenosina Trifosfato/metabolismo , Dominio Catalítico , Línea Celular , Humanos , Enlace de Hidrógeno , Modelos Biológicos , Fosforilación , Multimerización de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteolisis , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas c-raf/metabolismo
2.
Chembiochem ; 20(22): 2850-2861, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31152574

RESUMEN

The most prevalent BRAF mutation, V600E, occurs frequently in melanoma and other cancers. Although extensive progress has been made toward understanding the biology of RAF kinases, little in vitro characterization of full-length BRAFV600E is available. Herein, we show the successful purification of active, full-length BRAFV600E from mammalian cells for in vitro experiments. Our biochemical characterization of intact BRAFV600E together with molecular dynamics (MD) simulations of the BRAF kinase domain and cell-based assays demonstrate that BRAFV600E has several unique features that contribute to its tumorigenesis. Firstly, steady-state kinetic analyses reveal that purified BRAFV600E is more active than fully activated wild-type BRAF; this is consistent with the notion that elevated signaling output is necessary for transformation. Secondly, BRAFV600E has a higher potential to form oligomers, despite the fact that the V600E substitution confers constitutive kinase activation independent of an intact side-to-side dimer interface. Thirdly, BRAFV600E bypasses inhibitory P-loop phosphorylation to enforce the necessary elevated signaling output for tumorigenesis. Together, these results provide new insight into the biochemical properties of BRAFV600E , complementing the understanding of BRAF regulation under normal and disease conditions.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf/química , Activadores de Enzimas/metabolismo , Células HEK293 , Humanos , Imidazoles/metabolismo , Cinética , Simulación de Dinámica Molecular , Mutación , Oximas/metabolismo , Fosforilación/genética , Unión Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Multimerización de Proteína/genética , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Vemurafenib/metabolismo
3.
Chembiochem ; 19(18): 1988-1997, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-29992710

RESUMEN

BRAF kinase plays an important role in mitogen-activated protein kinase (MAPK) signaling and harbors activating mutations in about half of melanomas and in a smaller percentage in many other cancers. Despite its importance, few in vitro studies have been performed to characterize the biochemical properties of full-length BRAF. Herein, a strategy to generate an active, intact form of BRAF protein suitable for in vitro enzyme kinetics is described. It is shown that purified, intact BRAF protein autophosphorylates the kinase activation loop and this can be enhanced by binding the MEK protein substrate through an allosteric mechanism. These studies provide in vitro evidence that BRAF selectively binds to active RAS and that the BRAF/CRAF heterodimer is the most active form, relative to their respective homodimers. Full-length BRAF analysis with small-molecule BRAF inhibitors shows that two drugs, dabrafenib and vemurafenib, can modestly enhance kinase activity of BRAF at low concentration. Taken together, this characterization of intact BRAF contributes to a framework for understanding its role in cell signaling.


Asunto(s)
Activación Enzimática , Proteínas Proto-Oncogénicas B-raf/metabolismo , Células HEK293 , Proteínas del Choque Térmico HSP72/metabolismo , Humanos , MAP Quinasa Quinasa 1/metabolismo , Fosforilación , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
Curr Opin Chem Biol ; 71: 102205, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36067564

RESUMEN

The role of BRAF in tumor initiation has been established, however, the precise mechanism of autoinhibition has only been illustrated recently by several structural studies. These structures uncovered the basis by which the regulatory domains engage in regulating the activity of BRAF kinase domain, which lead to a more complete picture of the regulation cycle of RAF kinases. Small molecule BRAF inhibitors developed specifically to target BRAFV600E have proven effective at inhibiting the most dominant BRAF mutant in melanomas, but are less potent against other BRAF mutants in RAS-driven diseases due to paradoxical activation of the MAPK pathway. A variety of new generation inhibitors that do not show paradoxical activation have been developed. Alternatively, efforts have begun to develop inhibitors targeting the dimer interface of BRAF. A deeper understanding of BRAF regulation together with more diverse BRAF inhibitors will be beneficial for drug development in RAF or RASdriven cancers.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Mutación
5.
ACS Chem Biol ; 14(7): 1471-1480, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31243962

RESUMEN

BRAF is the most frequently mutated kinase in human cancers and is one of the major effectors of oncogenic RAS, making BRAF a target of considerable interest for anticancer drug development. Wild-type BRAF and a variety of oncogenic BRAF mutants are dependent on dimerization of the kinase domain, which also emerges as a culprit of drug resistance and side effects of current BRAF therapies. Thus, allosteric BRAF inhibitors capable of disrupting BRAF dimers could abrogate hyperactivated MAPK (mitogen-activated protein kinase) signaling driven by oncogenic BRAF or RAS and overcome the major limitations of current BRAF inhibitors. To establish this, we applied an in silico approach to design a series of peptide inhibitors targeting the dimer interface of BRAF. One resulting inhibitor was found to potently inhibit the kinase activity of BRAF homo- and heterodimers, including oncogenic BRAFG469A mutant. Moreover, this inhibitor synergizes with FDA-approved, ATP-competitive BRAF inhibitors against dimeric BRAF, suggesting that allosteric BRAF inhibitors have great potential to extend the application of current BRAF therapies. Additionally, targeting the dimer interface of BRAF kinase leads to protein degradation of both RAF and MEK, uncovering a novel scaffolding function of RAF in protecting large MAPK complexes from protein degradation. In conclusion, we have developed a potent lead peptide inhibitor for targeting the dimer interface of BRAF in cancer cells. The dual function of this peptide inhibitor validates the strategy for developing allosteric BRAF inhibitors that specifically dissociate RAF dimers and destabilize the MAPK signaling complex.


Asunto(s)
Péptidos/química , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA