Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Biol Chem ; 300(9): 107625, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122003

RESUMEN

Mixed-linkage ß(1,3)/ß(1,4)-glucan (MLG) is abundant in the human diet through the ingestion of cereal grains and is widely associated with healthful effects on metabolism and cholesterol levels. MLG is also a major source of fermentable glucose for the human gut microbiota (HGM). Bacteria from the family Prevotellaceae are highly represented in the HGM of individuals who eat plant-rich diets, including certain indigenous people and vegetarians in postindustrial societies. Here, we have defined and functionally characterized an exemplar Prevotellaceae MLG polysaccharide utilization locus (MLG-PUL) in the type-strain Segatella copri (syn. Prevotella copri) DSM 18205 through transcriptomic, biochemical, and structural biological approaches. In particular, structure-function analysis of the cell-surface glycan-binding proteins and glycoside hydrolases of the S. copri MLG-PUL revealed the molecular basis for glycan capture and saccharification. Notably, syntenic MLG-PULs from human gut, human oral, and ruminant gut Prevotellaceae are distinguished from their counterparts in Bacteroidaceae by the presence of a ß(1,3)-specific endo-glucanase from glycoside hydrolase family 5, subfamily 4 (GH5_4) that initiates MLG backbone cleavage. The definition of a family of homologous MLG-PULs in individual species enabled a survey of nearly 2000 human fecal microbiomes using these genes as molecular markers, which revealed global population-specific distributions of Bacteroidaceae- and Prevotellaceae-mediated MLG utilization. Altogether, the data presented here provide new insight into the molecular basis of ß-glucan metabolism in the HGM, as a basis for informing the development of approaches to improve the nutrition and health of humans and other animals.


Asunto(s)
Grano Comestible , Microbioma Gastrointestinal , beta-Glucanos , Humanos , beta-Glucanos/metabolismo , Grano Comestible/metabolismo , Grano Comestible/microbiología , Prevotella/metabolismo , Prevotella/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética
2.
FEMS Yeast Res ; 17(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087672

RESUMEN

Many relevant options to improve efficacy and kinetics of sucrose metabolism in Saccharomyces cerevisiae and, thereby, the economics of sucrose-based processes remain to be investigated. An essential first step is to identify all native sucrose-hydrolysing enzymes and sucrose transporters in this yeast, including those that can be activated by suppressor mutations in sucrose-negative strains. A strain in which all known sucrose-transporter genes (MAL11, MAL21, MAL31, MPH2, MPH3) were deleted did not grow on sucrose after 2 months of incubation. In contrast, a strain with deletions in genes encoding sucrose-hydrolysing enzymes (SUC2, MAL12, MAL22, MAL32) still grew on sucrose. Its specific growth rate increased from 0.08 to 0.25 h-1 after sequential batch cultivation. This increase was accompanied by a 3-fold increase of in vitro sucrose-hydrolysis and isomaltase activities, as well as by a 3- to 5-fold upregulation of the isomaltase-encoding genes IMA1 and IMA5. One-step Cas9-mediated deletion of all isomaltase-encoding genes (IMA1-5) completely abolished sucrose hydrolysis. Even after 2 months of incubation, the resulting strain did not grow on sucrose. This sucrose-negative strain can be used as a platform to test metabolic engineering strategies and for fundamental studies into sucrose hydrolysis or transport.


Asunto(s)
Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sacarosa/metabolismo , Transporte Biológico , Eliminación de Gen , Hidrólisis , Saccharomyces cerevisiae/crecimiento & desarrollo
3.
Biochemistry ; 54(10): 1930-42, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25714929

RESUMEN

GH5 is one of the largest glycoside hydrolase families, comprising at least 20 distinct activities within a common structural scaffold. However, the molecular basis for the functional differentiation among GH5 members is still not fully understood, principally for xyloglucan specificity. In this work, we elucidated the crystal structures of two novel GH5 xyloglucanases (XEGs) retrieved from a rumen microflora metagenomic library, in the native state and in complex with xyloglucan-derived oligosaccharides. These results provided insights into the structural determinants that differentiate GH5 XEGs from parental cellulases and a new mode of action within the GH5 family related to structural adaptations in the -1 subsite. The oligosaccharide found in the XEG5A complex, permitted the mapping, for the first time, of the positive subsites of a GH5 XEG, revealing the importance of the pocket-like topology of the +1 subsite in conferring the ability of some GH5 enzymes to attack xyloglucan. Complementarily, the XEG5B complex covered the negative subsites, completing the subsite mapping of GH5 XEGs at high resolution. Interestingly, XEG5B is, to date, the only GH5 member able to cleave XXXG into XX and XG, and in the light of these results, we propose that a modification in the -1 subsite enables the accommodation of a xylosyl side chain at this position. The stereochemical compatibility of the -1 subsite with a xylosyl moiety was also reported for other structurally nonrelated XEGs belonging to the GH74 family, indicating it to be an essential attribute for this mode of action.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Celulasa/química , Glucanos/química , Oligosacáridos/química , Xilanos/química , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Celulasa/genética , Celulasa/metabolismo , Glucanos/genética , Glucanos/metabolismo , Oligosacáridos/genética , Oligosacáridos/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Xilanos/genética , Xilanos/metabolismo
4.
J Mol Biol ; 431(4): 732-747, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30641082

RESUMEN

Bifidobacteria represent one of the first colonizers of human gut microbiota, providing to this ecosystem better health and nutrition. To maintain a mutualistic relationship, they have enzymes to degrade and use complex carbohydrates non-digestible by their hosts. To succeed in the densely populated gut environment, they evolved molecular strategies that remain poorly understood. Herein, we report a novel mechanism found in probiotic Bifidobacteria for the depolymerization of the ubiquitous 2-acetamido-2-deoxy-4-O-(ß-d-mannopyranosyl)-d-glucopyranose (Man-ß-1,4-GlcNAc), a disaccharide that composes the universal core of eukaryotic N-glycans. In contrast to Bacteroidetes, these Bifidobacteria have a specialist and strain-specific ß-mannosidase that contains three distinctive structural elements conferring high selectivity for Man-ß-1,4-GlcNAc: a lid that undergoes conformational changes upon substrate binding, a tryptophan residue swapped between the two dimeric subunits to accommodate the GlcNAc moiety, and a Rossmann fold subdomain strategically located near to the active site pocket. These key structural elements for Man-ß-1,4-GlcNAc specificity are highly conserved in Bifidobacterium species adapted to the gut of a wide range of social animals, including bee, pig, rabbit, and human. Together, our findings uncover an unprecedented molecular strategy employed by Bifidobacteria to selectively uptake carbohydrates from N-glycans in social hosts.


Asunto(s)
Bifidobacterium/metabolismo , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Polisacáridos/metabolismo , beta-Manosidasa/metabolismo , Animales , Dominio Catalítico , Ecosistema , Humanos , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA