Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(29): e2221118120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428915

RESUMEN

Proposed genetic approaches for reducing human malaria include population modification, which introduces genes into vector mosquitoes to reduce or prevent parasite transmission. We demonstrate the potential of Cas9/guide RNA (gRNA)-based gene-drive systems linked to dual antiparasite effector genes to spread rapidly through mosquito populations. Two strains have an autonomous gene-drive system coupled to dual anti-Plasmodium falciparum effector genes comprising single-chain variable fragment monoclonal antibodies targeting parasite ookinetes and sporozoites in the African malaria mosquitoes Anopheles gambiae (AgTP13) and Anopheles coluzzii (AcTP13). The gene-drive systems achieved full introduction within 3 to 6 mo after release in small cage trials. Life-table analyses revealed no fitness loads affecting AcTP13 gene-drive dynamics but AgTP13 males were less competitive than wild types. The effector molecules reduced significantly both parasite prevalence and infection intensities. These data supported transmission modeling of conceptual field releases in an island setting that shows meaningful epidemiological impacts at different sporozoite threshold levels (2.5 to 10 k) for human infection by reducing malaria incidence in optimal simulations by 50 to 90% within as few as 1 to 2 mo after a series of releases, and by ≥90% within 3 mo. Modeling outcomes for low sporozoite thresholds are sensitive to gene-drive system fitness loads, gametocytemia infection intensities during parasite challenges, and the formation of potentially drive-resistant genome target sites, extending the predicted times to achieve reduced incidence. TP13-based strains could be effective for malaria control strategies following validation of sporozoite transmission threshold numbers and testing field-derived parasite strains. These or similar strains are viable candidates for future field trials in a malaria-endemic region.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Animales , Masculino , Humanos , Anopheles/genética , Anopheles/parasitología , Mosquitos Vectores/genética , Malaria/prevención & control , Plasmodium falciparum/genética , Esporozoítos , Malaria Falciparum/parasitología
2.
J Infect Dis ; 229(4): 947-958, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38324758

RESUMEN

BACKGROUND: Malarial infections are often missed by microscopy, and most parasite carriers are asymptomatic in low-endemicity settings. Whether parasite detectability and its ability to elicit symptoms change as transmission declines remains unclear. METHODS: We performed a prospective panel survey with repeated measurements on the same participants over 12 months to investigate whether Plasmodium vivax detectability by microscopy and risk of symptoms upon infection varied during a community-wide larviciding intervention in the Amazon basin of Brazil that markedly reduced vector density. We screened 1096 to 1400 residents in the intervention site for malaria by microscopy and quantitative TaqMan assays at baseline and twice during intervention. RESULTS: We found that more P vivax infections than expected from their parasite densities measured by TaqMan assays were missed by microscopy as transmission decreased. At lower transmission, study participants appeared to tolerate higher P vivax loads without developing symptoms. We hypothesize that changes in the ratio between circulating parasites and those that accumulate in the bone marrow and spleen, by avoiding peripheral blood microscopy detection, account for decreased parasite detectability and lower risk of symptoms under low transmission. CONCLUSIONS: P vivax infections are more likely to be subpatent and remain asymptomatic as malaria transmission decreases.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Malaria Vivax/parasitología , Brasil/epidemiología , Estudios Prospectivos , Malaria Falciparum/parasitología , Prevalencia , Plasmodium vivax , Plasmodium falciparum
3.
Chaos ; 34(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305054

RESUMEN

We investigate the emergence of synchronization in heterogeneous networks of chaotic maps. Our findings reveal that a small cluster of highly connected maps is responsible for triggering the spark of synchronization. After the spark, the synchronized cluster grows in size and progressively moves to less connected maps, eventually reaching a cluster that may remain synchronized over time. We explore how the shape of the network degree distribution affects the onset of synchronization and derive an expression based on the network construction that determines the expected time for a network to synchronize. Understanding how the network design affects the spark of synchronization is particularly important for the control and design of more robust systems that require some level of coherence between a subset of units for better functioning. Numerical simulations in finite-sized networks are consistent with this analysis.

4.
Chaos ; 33(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703473

RESUMEN

Many real-world complex systems rely on cluster synchronization to function properly. A cluster of nodes exhibits synchronous behavior, while others behave erratically. Predicting the emergence of these clusters and understanding the mechanism behind their structure and variation in response to a parameter change is a daunting task in networks that lack symmetry. We unravel the mechanism for the emergence of cluster synchronization in heterogeneous random networks. We develop heterogeneous mean-field approximation together with a self-consistent theory to determine the onset and stability of the cluster. Our analysis shows that cluster synchronization occurs in a wide variety of heterogeneous networks, node dynamics, and coupling functions. The results could lead to a new understanding of the dynamical behavior of networks ranging from neural to social.

5.
Emerg Infect Dis ; 28(3): 709-712, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34963505

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant has been hypothesized to cause more severe illness than previous variants, especially in children. Successive SARS-CoV-2 IgG serosurveys in the Brazilian Amazon showed that age-specific attack rates and proportions of symptomatic SARS-CoV-2 infections were similar before and after Gamma variant emergence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Brasil/epidemiología , Niño , Humanos
6.
J Theor Biol ; 540: 111063, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35189135

RESUMEN

Individual variation in susceptibility and exposure is subject to selection by natural infection, accelerating the acquisition of immunity, and reducing herd immunity thresholds and epidemic final sizes. This is a manifestation of a wider population phenomenon known as "frailty variation". Despite theoretical understanding, public health policies continue to be guided by mathematical models that leave out considerable variation and as a result inflate projected disease burdens and overestimate the impact of interventions. Here we focus on trajectories of the coronavirus disease (COVID-19) pandemic in England and Scotland until November 2021. We fit models to series of daily deaths and infer relevant epidemiological parameters, including coefficients of variation and effects of non-pharmaceutical interventions which we find in agreement with independent empirical estimates based on contact surveys. Our estimates are robust to whether the analysed data series encompass one or two pandemic waves and enable projections compatible with subsequent dynamics. We conclude that vaccination programmes may have contributed modestly to the acquisition of herd immunity in populations with high levels of pre-existing naturally acquired immunity, while being crucial to protect vulnerable individuals from severe outcomes as the virus becomes endemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Inmunidad Colectiva , Pandemias/prevención & control , Vacunación
7.
J Math Biol ; 85(1): 2, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773525

RESUMEN

We study a susceptible-exposed-infected-recovered (SEIR) model considered by Aguas et al. (In: Herd immunity thresholds for SARS-CoV-2 estimated from unfolding epidemics, 2021), Gomes et al. (In: J Theor Biol. 540:111063, 2022) where individuals are assumed to differ in their susceptibility or exposure to infection. Under this heterogeneity assumption, epidemic growth is effectively suppressed when the percentage of the population having acquired immunity surpasses a critical level - the herd immunity threshold - that is lower than in homogeneous populations. We derive explicit formulas to calculate herd immunity thresholds and stable configurations, especially when susceptibility or exposure are gamma distributed, and explore extensions of the model.


Asunto(s)
COVID-19 , Epidemias , COVID-19/epidemiología , Humanos , Inmunidad Colectiva , Reinfección/epidemiología , SARS-CoV-2
8.
Clin Infect Dis ; 73(11): 2045-2054, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-33956939

RESUMEN

BACKGROUND: Immunity after dengue virus (DENV) infection has been suggested to cross-protect from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mortality. METHODS: We tested whether serologically proven prior DENV infection diagnosed in September-October 2019, before the coronavirus disease 2019 (COVID-19) pandemic, reduced the risk of SARS-CoV-2 infection and clinically apparent COVID-19 over the next 13 months in a population-based cohort in Amazonian Brazil. Mixed-effects multiple logistic regression analysis was used to identify predictors of infection and disease, adjusting for potential individual and household-level confounders. Virus genomes from 14 local SARS-CoV-2 isolates were obtained using whole-genome sequencing. RESULTS: Anti-DENV immunoglobulin G (IgG) was found in 37.0% of 1285 cohort participants (95% confidence interval [CI]: 34.3% to 39.7%) in 2019, with 10.4 (95% CI: 6.7-15.5) seroconversion events per 100 person-years during the follow-up. In 2020, 35.2% of the participants (95% CI: 32.6% to 37.8%) had anti-SARS-CoV-2 IgG and 57.1% of the 448 SARS-CoV-2 seropositives (95% CI: 52.4% to 61.8%) reported clinical manifestations at the time of infection. Participants aged >60 years were twice more likely to have symptomatic COVID-19 than children under 5 years. Locally circulating SARS-CoV-2 isolates were assigned to the B.1.1.33 lineage. Contrary to the cross-protection hypothesis, prior DENV infection was associated with twice the risk of clinically apparent COVID-19 upon SARS-CoV-2 infection, with P values between .025 and .039 after adjustment for identified confounders. CONCLUSIONS: Higher risk of clinically apparent COVID-19 among individuals with prior dengue has important public health implications for communities sequentially exposed to DENV and SARS-CoV-2 epidemics.


Asunto(s)
COVID-19 , Dengue , Brasil/epidemiología , Niño , Preescolar , Estudios de Cohortes , Dengue/epidemiología , Humanos , Pandemias , SARS-CoV-2
9.
PLoS Comput Biol ; 16(3): e1007377, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32168349

RESUMEN

The overall malaria burden in the Americas has decreased dramatically over the past two decades, but residual transmission pockets persist across the Amazon Basin, where Plasmodium vivax is the predominant infecting species. Current elimination efforts require a better quantitative understanding of malaria transmission dynamics for planning, monitoring, and evaluating interventions at the community level. This can be achieved with mathematical models that properly account for risk heterogeneity in communities approaching elimination, where few individuals disproportionately contribute to overall malaria prevalence, morbidity, and onwards transmission. Here we analyse demographic information combined with routinely collected malaria morbidity data from the town of Mâncio Lima, the main urban transmission hotspot of Brazil. We estimate the proportion of high-risk subjects in the host population by fitting compartmental susceptible-infected-susceptible (SIS) transmission models simultaneously to age-stratified vivax malaria incidence densities and the frequency distribution of P. vivax malaria attacks experienced by each individual over 12 months. Simulations with the best-fitting SIS model indicate that 20% of the hosts contribute 86% of the overall vivax malaria burden. Despite the low overall force of infection typically found in the Amazon, about one order of magnitude lower than that in rural Africa, high-risk individuals gradually develop clinical immunity following repeated infections and eventually constitute a substantial infectious reservoir comprised of asymptomatic parasite carriers that is overlooked by routine surveillance but likely fuels onwards malaria transmission. High-risk individuals therefore represent a priority target for more intensive and effective interventions that may not be readily delivered to the entire community.


Asunto(s)
Malaria Vivax/epidemiología , Malaria/epidemiología , Brasil/epidemiología , Simulación por Computador , Femenino , Humanos , Incidencia , Malaria Falciparum/epidemiología , Malaria Vivax/parasitología , Malaria Vivax/transmisión , Masculino , Modelos Teóricos , Plasmodium falciparum , Plasmodium vivax/patogenicidad , Prevalencia
10.
Artículo en Inglés | MEDLINE | ID: mdl-30782991

RESUMEN

Emerging Plasmodium vivax resistance to chloroquine (CQ) may undermine malaria elimination efforts in South America. CQ-resistant P. vivax has been found in the major port city of Manaus but not in the main malaria hot spots across the Amazon Basin of Brazil, where CQ is routinely coadministered with primaquine (PQ) for radical cure of vivax malaria. Here we randomly assigned 204 uncomplicated vivax malaria patients from Juruá Valley, northwestern Brazil, to receive either sequential (arm 1) or concomitant (arm 2) CQ-PQ treatment. Because PQ may synergize the blood schizontocidal effect of CQ and mask low-level CQ resistance, we monitored CQ-only efficacy in arm 1 subjects, who had PQ administered only at the end of the 28-day follow-up. We found adequate clinical and parasitological responses in all subjects assigned to arm 2. However, 2.2% of arm 1 patients had microscopy-detected parasite recrudescences at day 28. When PCR-detected parasitemias at day 28 were considered, response rates decreased to 92.1% and 98.8% in arms 1 and 2, respectively. Therapeutic CQ levels were documented in 6 of 8 recurrences, consistent with true CQ resistance in vivo In contrast, ex vivo assays provided no evidence of CQ resistance in 49 local P. vivax isolates analyzed. CQ-PQ coadministration was not found to potentiate the antirelapse efficacy of PQ over 180 days of surveillance; however, we suggest that larger studies are needed to examine whether and how CQ-PQ interactions, e.g., CQ-mediated inhibition of PQ metabolism, modulate radical cure efficacy in different P. vivax-infected populations. (This study has been registered at ClinicalTrials.gov under identifier NCT02691910.).


Asunto(s)
Antimaláricos/uso terapéutico , Cloroquina/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Plasmodium vivax/patogenicidad , Primaquina/uso terapéutico , Adolescente , Adulto , Anciano , Brasil , Niño , Preescolar , Quimioterapia Combinada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasmodium vivax/efectos de los fármacos , Resultado del Tratamiento , Adulto Joven
11.
PLoS Negl Trop Dis ; 17(1): e0011020, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634044

RESUMEN

Extensive research has examined why some people have frequent Plasmodium falciparum malaria episodes in sub-Saharan Africa while others remain free of disease most of the time. In contrast, malaria risk heterogeneity remains little studied in regions where P. vivax is the dominant species. Are repeatedly infected people in vivax malaria settings such as the Amazon just unlucky? Here, we briefly review evidence that human genetic polymorphism and acquired immunity after repeated exposure to parasites can modulate the risk of P. vivax infection and disease in predictable ways. One-fifth of the hosts account for 80% or more of the community-wide vivax malaria burden and contribute disproportionally to onward transmission, representing a priority target of more intensive interventions to achieve malaria elimination. Importantly, high-risk individuals eventually develop clinical immunity, even in areas with very low or residual malaria transmission, and may constitute a large but silent parasite reservoir.


Asunto(s)
Malaria Vivax , Humanos , Malaria Vivax/genética , Malaria Vivax/inmunología , Plasmodium vivax , Prevalencia , Recurrencia
12.
Sci Adv ; 9(27): eade8903, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37406109

RESUMEN

Malaria is among the world's deadliest diseases, predominantly affecting Sub-Saharan Africa and killing over half a million people annually. Controlling the principal vector, the mosquito Anopheles gambiae, as well as other anophelines, is among the most effective methods to control disease spread. Here, we develop a genetic population suppression system termed Ifegenia (inherited female elimination by genetically encoded nucleases to interrupt alleles) in this deadly vector. In this bicomponent CRISPR-based approach, we disrupt a female-essential gene, femaleless (fle), demonstrating complete genetic sexing via heritable daughter gynecide. Moreover, we demonstrate that Ifegenia males remain reproductively viable and can load both fle mutations and CRISPR machinery to induce fle mutations in subsequent generations, resulting in sustained population suppression. Through modeling, we demonstrate that iterative releases of nonbiting Ifegenia males can act as an effective, confinable, controllable, and safe population suppression and elimination system.


Asunto(s)
Anopheles , Malaria , Animales , Masculino , Humanos , Femenino , Malaria/genética , Anopheles/genética , Control de Mosquitos/métodos , Mosquitos Vectores/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-35663000

RESUMEN

Background: Low-density and asymptomatic Plasmodium vivax infections remain largely undetected and untreated and may contribute significantly to malaria transmission in the Amazon. Methods: We analysed individual participant data from population-based surveys that measured P vivax prevalence by microscopy and polymerase chain reaction (PCR) between 2002 and 2015 and modelled the relationship between parasite density and infectiousness to vectors using membrane feeding assay data. We estimated the proportion of sub-patent (i.e., missed by microscopy) and asymptomatic P vivax infections and examined how parasite density relates to clinical manifestations and mosquito infection in Amazonian settings. Findings: We pooled 24,986 observations from six sites in Brazil and Peru. P vivax was detected in 6·8% and 2·1% of them by PCR and microscopy, respectively. 58·5% to 92·6% of P vivax infections were asymptomatic and 61·2% to 96·3% were sub-patent across study sites. P vivax density thresholds associated with clinical symptoms were one order of magnitude higher in children than in adults. We estimate that sub-patent parasite carriers are minimally infectious and contribute 12·7% to 24·9% of the community-wide P vivax transmission, while asymptomatic carriers are the source of 28·2% to 79·2% of mosquito infections. Interpretation: Asymptomatic P vivax carriers constitute a vast infectious reservoir that, if targeted by malaria elimination strategies, could substantially reduce malaria transmission in the Amazon. Infected children may remain asymptomatic despite high parasite densities that elicit clinical manifestations in adults. Funding: US National Institutes of Health, Fundação de Amparo à Pesquisa do Estado de São Paulo, and Belgium Development Cooperation.

14.
medRxiv ; 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32511451

RESUMEN

Individual variation in susceptibility and exposure is subject to selection by natural infection, accelerating the acquisition of immunity, and reducing herd immunity thresholds and epidemic final sizes. This is a manifestation of a wider population phenomenon known as "frailty variation". Despite theoretical understanding, public health policies continue to be guided by mathematical models that leave out considerable variation and as a result inflate projected disease burdens and overestimate the impact of interventions. Here we focus on trajectories of the coronavirus disease (COVID-19) pandemic in England and Scotland until November 2021. We fit models to series of daily deaths and infer relevant epidemiological parameters, including coefficients of variation and effects of non-pharmaceutical interventions which we find in agreement with independent empirical estimates based on contact surveys. Our estimates are robust to whether the analysed data series encompass one or two pandemic waves and enable projections compatible with subsequent dynamics. We conclude that vaccination programmes may have contributed modestly to the acquisition of herd immunity in populations with high levels of pre-existing naturally acquired immunity, while being critical to protect vulnerable individuals from severe outcomes as the virus becomes endemic.

15.
Am J Trop Med Hyg ; 107(4_Suppl): 168-181, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228921

RESUMEN

The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/fisiología , Biología , Brasil/epidemiología , Humanos , Malaria/epidemiología , Malaria/prevención & control , Mosquitos Vectores/fisiología , Perú/epidemiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-33360105

RESUMEN

Emerging antimalarial drug resistance may undermine current efforts to control and eliminate Plasmodium vivax, the most geographically widespread yet neglected human malaria parasite. Endemic countries are expected to assess regularly the therapeutic efficacy of antimalarial drugs in use in order to adjust their malaria treatment policies, but proper funding and trained human resources are often lacking to execute relatively complex and expensive clinical studies, ideally complemented by ex vivo assays of drug resistance. Here we review the challenges for assessing in vivo P. vivax responses to commonly used antimalarials, especially chloroquine and primaquine, in the presence of confounding factors such as variable drug absorption, metabolism and interaction, and the risk of new infections following successful radical cure. We introduce a simple modeling approach to quantify the relative contribution of relapses and new infections to recurring parasitemias in clinical studies of hypnozoitocides. Finally, we examine recent methodological advances that may render ex vivo assays more practical and widely used to confirm P. vivax drug resistance phenotypes in endemic settings and review current approaches to the development of robust genetic markers for monitoring chloroquine resistance in P. vivax populations.


Asunto(s)
Antimaláricos , Malaria Vivax , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Humanos , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Plasmodium vivax/genética , Primaquina/farmacología , Primaquina/uso terapéutico
17.
PLoS Negl Trop Dis ; 15(7): e0009568, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34264946

RESUMEN

BACKGROUND: Malaria causes significant morbidity and mortality in children under 5 years of age in sub-Saharan Africa and the Asia-Pacific region. Neonates and young infants remain relatively protected from clinical disease and the transplacental transfer of maternal antibodies is hypothesized as one of the protective factors. The adverse health effects of Plasmodium vivax malaria in early childhood-traditionally viewed as a benign infection-remain largely neglected in relatively low-endemicity settings across the Amazon. METHODOLOGY/PRINCIPAL FINDINGS: Overall, 1,539 children participating in a birth cohort study in the main transmission hotspot of Amazonian Brazil had a questionnaire administered, and blood sampled at the two-year follow-up visit. Only 7.1% of them experienced malaria confirmed by microscopy during their first 2 years of life- 89.1% of the infections were caused by P. vivax. Young infants appear to be little exposed to, or largely protected from infection, but children >12 months of age become as vulnerable to vivax malaria as their mothers. Few (1.4%) children experienced ≥4 infections during the 2-year follow-up, accounting for 43.4% of the overall malaria burden among study participants. Antenatal malaria diagnosed by microscopy during pregnancy or by PCR at delivery emerged as a significant correlate of subsequent risk of P. vivax infection in the offspring (incidence rate ratio, 2.58; P = 0.002), after adjusting for local transmission intensity. Anti-P. vivax antibodies measured at delivery do not protect mothers from subsequent malaria; whether maternal antibodies transferred to the fetus reduce early malaria risk in children remains undetermined. Finally, recent and repeated vivax malaria episodes in early childhood are associated with increased risk of anemia at the age of 2 years in this relatively low-endemicity setting. CONCLUSIONS/SIGNIFICANCE: Antenatal infection increases the risk of vivax malaria in the offspring and repeated childhood P. vivax infections are associated with anemia at the age of 2 years.


Asunto(s)
Anemia/epidemiología , Anemia/etiología , Anticuerpos Antiprotozoarios/sangre , Malaria Vivax/epidemiología , Plasmodium vivax , Brasil/epidemiología , Preescolar , Estudios de Cohortes , Femenino , Humanos , Inmunidad Materno-Adquirida , Lactante , Recién Nacido , Malaria Vivax/parasitología , Masculino
18.
PLoS Negl Trop Dis ; 14(7): e0008526, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32735631

RESUMEN

Each year, 4.3 million pregnant women are exposed to malaria risk in Latin America and the Caribbean. Plasmodium vivax causes 76% of the regional malaria burden and appears to be less affected than P. falciparum by current elimination efforts. This is in part due to the parasite's ability to stay dormant in the liver and originate relapses within months after a single mosquito inoculation. Primaquine (PQ) is routinely combined with chloroquine (CQ) or other schizontocidal drugs to supress P. vivax relapses and reduce the risk of late blood-stage recrudescences of parasites with low-grade CQ resistance. However, PQ is contraindicated for pregnant women, who remain at increased risk of repeated infections following CQ-only treatment. Here we apply a mathematical model to time-to-recurrence data from Juruá Valley, Brazil's main malaria transmission hotspot, to quantify the extra burden of parasite recurrences attributable to PQ ineligibility in pregnant women. The model accounts for competing risks, since relapses and late recrudescences (that may be at least partially prevented by PQ) and new infections (that are not affected by PQ use) all contribute to recurrences. We compare recurrence rates observed after primary P. vivax infections in 158 pregnant women treated with CQ only and 316 P. vivax infections in non-pregnant control women, matched for age, date of infection, and place of residence, who were administered a standard CQ-PQ combination. We estimate that, once infected with P. vivax, 23% of the pregnant women have one or more vivax malaria recurrences over the next 12 weeks; 86% of these early P. vivax recurrences are attributable to relapses or late recrudescences, rather than new infections that could be prevented by reducing malaria exposure during pregnancy. Model simulations indicate that weekly CQ chemoprophylaxis extending over 4 to 12 weeks, starting after the first vivax malaria episode diagnosed in pregnancy, might reduce the risk of P. vivax recurrences over the next 12 months by 20% to 65%. We conclude that post-treatment CQ prophylaxis could be further explored as a measure to prevent vivax malaria recurrences in pregnancy and avert their adverse effects on maternal and neonatal health.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria Vivax/prevención & control , Plasmodium vivax , Complicaciones Parasitarias del Embarazo/prevención & control , Primaquina/administración & dosificación , Adolescente , Adulto , Brasil , Estudios de Casos y Controles , Niño , Cloroquina/administración & dosificación , Cloroquina/uso terapéutico , Femenino , Humanos , Malaria Vivax/tratamiento farmacológico , Modelos Biológicos , Embarazo , Primaquina/uso terapéutico , Recurrencia , Adulto Joven
19.
PLoS Negl Trop Dis ; 14(10): e0008808, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33112884

RESUMEN

BACKGROUND: Plasmodium vivax is a neglected human malaria parasite that causes significant morbidity in the Americas, the Middle East, Asia, and the Western Pacific. Population genomic approaches remain little explored to map local and regional transmission pathways of P. vivax across the main endemic sites in the Americas, where great progress has been made towards malaria elimination over the past decades. METHODOLOGY/PRINCIPAL FINDINGS: We analyze 38 patient-derived P. vivax genome sequences from Mâncio Lima (ML)-the Amazonian malaria hotspot next to the Brazil-Peru border-and 24 sequences from two other sites in Acre State, Brazil, a country that contributes 23% of malaria cases in the Americas. We show that the P. vivax population of ML is genetically diverse (π = 4.7 × 10-4), with a high polymorphism particularly in genes encoding proteins putatively involved in red blood cell invasion. Paradoxically, however, parasites display strong genome-wide linkage disequilibrium, being fragmented into discrete lineages that are remarkably stable across time and space, with only occasional recombination between them. Using identity-by-descent approaches, we identified a large cluster of closely related sequences that comprises 16 of 38 genomes sampled in ML over 26 months. Importantly, we found significant ancestry sharing between parasites at a large geographic distance, consistent with substantial gene flow between regional P. vivax populations. CONCLUSIONS/SIGNIFICANCE: We have characterized the sustained expansion of highly inbred P. vivax lineages in a malaria hotspot that can seed regional transmission. Potential source populations in hotspots represent a priority target for malaria elimination in the Amazon.


Asunto(s)
Malaria Vivax/parasitología , Plasmodium vivax/genética , Recombinación Genética , Brasil/epidemiología , Variación Genética , Genoma de Protozoos , Genómica , Humanos , Malaria Vivax/epidemiología , Filogenia , Plasmodium vivax/clasificación , Plasmodium vivax/aislamiento & purificación
20.
PLoS One ; 14(8): e0220980, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31398228

RESUMEN

Despite the recent malaria burden reduction in the Americas, focal transmission persists across the Amazon Basin. Timely analysis of surveillance data is crucial to characterize high-risk individuals and households for better targeting of regional elimination efforts. Here we analyzed 5,480 records of laboratory-confirmed clinical malaria episodes combined with demographic and socioeconomic information to identify risk factors for elevated malaria incidence in Mâncio Lima, the main urban transmission hotspot of Brazil. Overdispersed malaria count data clustered into households were fitted with random-effects zero-inflated negative binomial regression models. Random-effect predictors were used to characterize the spatial heterogeneity in malaria risk at the household level. Adult males were identified as the population stratum at greatest risk, likely due to increased occupational exposure away of the town. However, poor housing and residence in the less urbanized periphery of the town were also found to be key predictors of malaria risk, consistent with a substantial local transmission. Two thirds of the 8,878 urban residents remained uninfected after 23,975 person-years of follow-up. Importantly, we estimated that nearly 14% of them, mostly children and older adults living in the central urban hub, were free of malaria risk, being either unexposed, naturally unsusceptible, or immune to infection. We conclude that statistical modeling of routinely collected, but often neglected, malaria surveillance data can be explored to characterize drivers of transmission heterogeneity at the community level and provide evidence for the rational deployment of control interventions.


Asunto(s)
Malaria/epidemiología , Modelos Estadísticos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Brasil/epidemiología , Niño , Preescolar , Ciudades , Femenino , Geografía , Humanos , Incidencia , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Análisis de Regresión , Factores de Riesgo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA