Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Nature ; 587(7834): 466-471, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116313

RESUMEN

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.


Asunto(s)
Proteína ADAMTS4/metabolismo , Fibroblastos/enzimología , Fibroblastos/patología , Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/fisiopatología , Proteína ADAMTS4/antagonistas & inhibidores , Animales , Aves/virología , Matriz Extracelular/enzimología , Perfilación de la Expresión Génica , Humanos , Gripe Aviar/virología , Gripe Humana/patología , Gripe Humana/terapia , Gripe Humana/virología , Interferones/inmunología , Interferones/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Pulmón/enzimología , Pulmón/virología , Ratones , Síndrome de Dificultad Respiratoria/enzimología , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Estaciones del Año , Análisis de la Célula Individual , Células del Estroma/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L367-L376, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252657

RESUMEN

Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages (AMs) and bone marrow-derived macrophages (BMDMs) from wild-type (wt) and TREK-1-/- mice, we measured responses to inflammasome priming [using lipopolysaccharide (LPS)] and activation (LPS + ATP). We measured IL-1ß, caspase-1, and NLRP3 via ELISA and Western blot. A membrane-permeable potassium indicator was used to measure potassium efflux during ATP exposure, and a fluorescence-based assay was used to assess changes in membrane potential. Inflammasome activation induced by LPS + ATP increased IL-1ß secretion in wt AMs, whereas activation was significantly reduced in TREK-1-/- AMs. Priming of BMDMs using LPS was not affected by either genetic deficiency or pharmacological inhibition of TREK-1 with Spadin. Cleavage of caspase-1 following LPS + ATP treatment was significantly reduced in TREK-1-/- BMDMs. The intracellular potassium concentration in LPS-primed wt BMDMs was significantly lower compared with TREK-1-/- BMDMs or wt BMDMs treated with Spadin. Conversely, activation of TREK-1 with BL1249 caused a decrease in intracellular potassium in wt BMDMs. Treatment of LPS-primed BMDMs with ATP caused a rapid reduction in intracellular potassium levels, with the largest change observed in TREK-1-/- BMDMs. Intracellular K+ changes were associated with changes in the plasma membrane potential (Em), as evidenced by a more depolarized Em in TREK-1-/- BMDMs compared with wt, and Em hyperpolarization upon TREK-1 channel opening with BL1249. These results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.NEW & NOTEWORTHY Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages and bone marrow-derived macrophages from wild-type and TREK-1-/- mice, we measured responses to inflammasome priming (using LPS) and activation (LPS + ATP). Our results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.


Asunto(s)
Inflamasomas , Canales de Potasio de Dominio Poro en Tándem , Tetrahidronaftalenos , Tetrazoles , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potasio/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Ratones Noqueados , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Macrófagos/metabolismo , Caspasa 1/metabolismo , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/metabolismo , Interleucina-1beta/metabolismo
4.
Am J Respir Cell Mol Biol ; 66(3): 312-322, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861136

RESUMEN

Respiratory syncytial virus (RSV)-induced immunopathogenesis and disease severity in neonatal mice and human infants have been related to elevated pulmonary IL-33. Thus, targeting IL-33 has been suggested as a potential therapy for respiratory viral infections. Yet, the regulatory mechanisms on IL-33 during early life remain unclear. Here, using a neonatal mouse model of RSV, we demonstrate that IL-1ß positively regulates but is not required for RSV-induced expression of pulmonary IL-33 in neonatal mice early after the initial infection. Exogenous IL-1ß upregulates RSV-induced IL-33 expression by promoting the proliferation of IL-33+ lung epithelial stem/progenitor cells. These cells are exclusively detected in RSV-infected neonatal rather than adult mice, partially explaining the IL-1ß-independent IL-33 expression in RSV-infected adult mice. Furthermore, IL-1ß aggravates IL-33-mediated T-helper cell type 2-biased immunopathogenesis upon reinfection. Collectively, our study demonstrates that IL-1ß exacerbates IL-33-mediated RSV immunopathogenesis by promoting the proliferation of IL-33+ epithelial stem/progenitor cells in early life.


Asunto(s)
Interleucina-1beta/farmacología , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Humanos , Interleucina-33 , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/patología , Células Madre/patología
5.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293318

RESUMEN

Air pollution is a known environmental health hazard. A major source of air pollution includes diesel exhaust (DE). Initially, research on DE focused on respiratory morbidities; however, more recently, exposures to DE have been associated with neurological developmental disorders and neurodegeneration. In this study, we investigated the effects of sub-chronic inhalation exposure to DE on neuroinflammatory markers in two inbred mouse strains and both sexes, including whole transcriptome examination of the medial prefrontal cortex. We exposed aged male and female C57BL/6J (B6) and DBA/2J (D2) mice to DE, which was cooled and diluted with HEPA-filtered compressed air for 2 h per day, 5 days a week, for 4 weeks. Control animals were exposed to HEPA-filtered air on the same schedule as DE-exposed animals. The prefrontal cortex was harvested and analyzed for proinflammatory cytokine gene expression (Il1ß, Il6, Tnfα) and transcriptome-wide response by RNA-seq. We observed differential cytokine gene expression between strains and sexes in the DE-exposed vs. control-exposed groups for Il1ß, Tnfα, and Il6. For RNA-seq, we identified 150 differentially expressed genes between air and DE treatment related to natural killer cell-mediated cytotoxicity per Kyoto Encyclopedia of Genes and Genomes pathways. Overall, our data show differential strain-related effects of DE on neuroinflammation and neurotoxicity and demonstrate that B6 are more susceptible than D2 to gene expression changes due to DE exposures than D2. These results are important because B6 mice are often used as the default mouse model for DE studies and strain-related effects of DE neurotoxicity warrant expanded studies.


Asunto(s)
Contaminantes Atmosféricos , Síndromes de Neurotoxicidad , Animales , Masculino , Femenino , Ratones , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Factor de Necrosis Tumoral alfa , Interleucina-6 , Individualidad , Ratones Endogámicos DBA , Ratones Endogámicos C57BL , Exposición por Inhalación , Citocinas/genética , Citocinas/metabolismo , Genómica
6.
Am J Physiol Heart Circ Physiol ; 321(2): H309-H317, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34170196

RESUMEN

Pulmonary hypertension (PH) observed during respiratory syncytial virus (RSV) bronchiolitis is associated with morbidity and mortality, especially in children with congenital heart disease. Yet, the pathophysiological mechanisms of RSV-associated PH remain unclear. Therefore, this study aimed to investigate the pathophysiological mechanism of RSV-associated PH. We used a translational mouse model of RSV-associated PH, in which wild-type (WT) and suppression of tumorigenicity 2 (ST2) knockout neonatal mice were infected with RSV at 5 days old and reinfected 4 wk later. The development of PH in WT mice following RSV reinfection was evidenced by elevated right ventricle systolic pressure, shortened pulmonary artery acceleration time (PAT), and decreased PAT/ejection time (ET) ratio. It coincided with the augmentation of periostin and IL-13 expression and increased arginase bioactivity by both arginase 1 and 2 as well as induction of nitric oxide synthase (NOS) uncoupling. Absence of ST2 signaling prevented RSV-reinfected mice from developing PH by suppressing NOS uncoupling. In summary, ST2 signaling was involved in the development of RSV-associated PH. ST2 signaling inhibition may be a novel therapeutic target for RSV-associated PH.NEW & NOTEWORTHY We report that the pathogenic role of ST2-mediated type 2 immunity and mechanisms contribute to RSV-associated pulmonary hypertension. Inhibiting ST2 signaling may be a novel therapeutic target for this condition.


Asunto(s)
Bronquiolitis Viral/genética , Hipertensión Pulmonar/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Pulmón/metabolismo , Infecciones por Virus Sincitial Respiratorio/genética , Animales , Animales Recién Nacidos , Arginasa/genética , Arginasa/metabolismo , Bronquiolitis Viral/complicaciones , Bronquiolitis Viral/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Reinfección , Infecciones por Virus Sincitial Respiratorio/complicaciones , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitiales Respiratorios
7.
Respir Res ; 22(1): 275, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702270

RESUMEN

BACKGROUND: Epidemiological data associate high levels of combustion-derived particulate matter (PM) with deleterious respiratory outcomes, but the mechanism underlying those outcomes remains elusive. It has been acknowledged by the World Health Organization that PM exposure contributes to more than 4.2 million all-cause mortalities worldwide each year. Current literature demonstrates that PM exacerbates respiratory diseases, impairs lung function, results in chronic respiratory illnesses, and is associated with increased mortality. The proposed mechanisms revolve around oxidative stress and inflammation promoting pulmonary physiological remodeling. However, our previous data found that PM is capable of inducing T helper cell 17 (Th17) immune responses via aryl hydrocarbon receptor (Ahr) activation, which was associated with neutrophilic invasion characteristic of steroid insensitive asthma. METHODS: In the present study, we utilized a combination of microarray and single cell RNA sequencing data to analyze the immunological landscape in mouse lungs following acute exposure to combustion derived particulate matter. RESULTS: We present data that suggest epithelial cells produce specific cytokines in the aryl hydrocarbon receptor (Ahr) pathway that inform dendritic cells to initiate the production of pathogenic T helper (eTh17) cells. Using single-cell RNA sequencing analysis, we observed that upon exposure epithelial cells acquire a transcriptomic profile indicative of increased Il-17 signaling, Ahr activation, Egfr signaling, and T cell receptor and co-stimulatory signaling pathways. Epithelial cells further showed, Ahr activation is brought on by Ahr/ARNT nuclear translocation and activation of tyrosine kinase c-src, Egfr, and subsequently Erk1/2 pathways. CONCLUSIONS: Collectively, our data corroborates that PM initiates an eTh17 specific inflammatory response causing neutrophilic asthma through pathways in epithelial, dendritic, and T cells that promote eTh17 differentiation during initial PM exposure.


Asunto(s)
Asma/inducido químicamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Dendríticas/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Pulmón/efectos de los fármacos , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Material Particulado/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Células Th17/efectos de los fármacos , Animales , Asma/genética , Asma/inmunología , Asma/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Pulmón/inmunología , Pulmón/metabolismo , Masculino , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , RNA-Seq , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , Análisis de la Célula Individual , Células Th17/inmunología , Células Th17/metabolismo , Transcriptoma
8.
Environ Health ; 20(1): 34, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33771185

RESUMEN

BACKGROUND: An unusual feature of SARS-Cov-2 infection and the COVID-19 pandemic is that children are less severely affected than adults. This is especially paradoxical given the epidemiological links between poor air quality and increased COVID-19 severity in adults and that children are generally more vulnerable than adults to the adverse consequences of air pollution. OBJECTIVES: To identify gaps in knowledge about the factors that protect children from severe SARS-Cov-2 infection even in the face of air pollution, and to develop a transdisciplinary research strategy to address these gaps. METHODS: An international group of researchers interested in children's environmental health was invited to identify knowledge gaps and to develop research questions to close these gaps. DISCUSSION: Key research questions identified include: what are the effects of SAR-Cov-2 infection during pregnancy on the developing fetus and child; what is the impact of age at infection and genetic susceptibility on disease severity; why do some children with COVID-19 infection develop toxic shock and Kawasaki-like symptoms; what are the impacts of toxic environmental exposures including poor air quality, chemical and metal exposures on innate immunity, especially in the respiratory epithelium; what is the possible role of a "dirty" environment in conveying protection - an example of the "hygiene hypothesis"; and what are the long term health effects of SARS-Cov-2 infection in early life. CONCLUSION: A concerted research effort by a multidisciplinary team of scientists is needed to understand the links between environmental exposures, especially air pollution and COVID-19. We call for specific research funding to encourage basic and clinical research to understand if/why exposure to environmental factors is associated with more severe disease, why children appear to be protected, and how innate immune responses may be involved. Lessons learned about SARS-Cov-2 infection in our children will help us to understand and reduce disease severity in adults, the opposite of the usual scenario.


Asunto(s)
COVID-19/epidemiología , Salud Infantil , Exposición a Riesgos Ambientales/efectos adversos , Salud Ambiental , Adulto , Factores de Edad , Contaminación del Aire/efectos adversos , Contaminación del Aire/prevención & control , COVID-19/inmunología , COVID-19/patología , COVID-19/prevención & control , Niño , Susceptibilidad a Enfermedades/epidemiología , Susceptibilidad a Enfermedades/inmunología , Susceptibilidad a Enfermedades/patología , Exposición a Riesgos Ambientales/prevención & control , Desarrollo Fetal , Humanos , Hipótesis de la Higiene , Inmunidad Innata , Sistema Respiratorio/patología , Sistema Respiratorio/virología , SARS-CoV-2
9.
Part Fibre Toxicol ; 18(1): 43, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906172

RESUMEN

BACKGROUND: Particulate matter (PM) containing environmentally persistent free radicals (EPFRs) are formed during various combustion processes, including the thermal remediation of hazardous wastes. Exposure to PM adversely affects respiratory health in infants and is associated with increased morbidity and mortality due to acute lower respiratory tract infections. We previously reported that early-life exposure to PM damages the lung epithelium and suppresses immune responses to influenza virus (Flu) infection, thereby enhancing Flu severity. Interleukin 22 (IL22) is important in resolving lung injury following Flu infection. In the current study, we determined the effects of PM exposure on pulmonary IL22 responses using our neonatal mouse model of Flu infection. RESULTS: Exposure to PM resulted in an immediate (0.5-1-day post-exposure; dpe) increase in IL22 expression in the lungs of C57BL/6 neonatal mice; however, this IL22 expression was not maintained and failed to increase with either continued exposure to PM or subsequent Flu infection of PM-exposed mice. This contrasts with increased IL22 expression in age-matched mice exposed to vehicle and Flu infected. Activation of the aryl hydrocarbon receptor (AhR), which mediates the induction and release of IL22 from immune cells, was also transiently increased with PM exposure. The microbiome plays a major role in maintaining epithelial integrity and immune responses by producing various metabolites that act as ligands for AhR. Exposure to PM induced lung microbiota dysbiosis and altered the levels of indole, a microbial metabolite. Treatment with recombinant IL22 or indole-3-carboxaldehyde (I3A) prevented PM associated lung injury. In addition, I3A treatment also protected against increased mortality in Flu-infected mice exposed to PMs. CONCLUSIONS: Together, these data suggest that exposure to PMs results in failure to sustain IL22 levels and an inability to induce IL22 upon Flu infection. Insufficient levels of IL22 may be responsible for aberrant epithelial repair and immune responses, leading to increased Flu severity in areas of high PM.


Asunto(s)
Gripe Humana , Material Particulado , Animales , Animales Recién Nacidos , Radicales Libres , Humanos , Pulmón , Ratones , Ratones Endogámicos C57BL , Material Particulado/toxicidad
10.
Am J Respir Crit Care Med ; 201(3): 325-334, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31644878

RESUMEN

Rationale: Respiratory syncytial virus (RSV) causes significant morbidity and mortality in infants worldwide. Although T-helper type 2 (Th2) cell pathology is implicated in severe disease, the mechanisms underlying the development of immunopathology are incompletely understood.Objectives: We aimed to identify local immune responses associated with severe RSV in infants. Our hypothesis was that disease severity would correlate with enhanced Th2 cellular responses.Methods: Nasal aspirates were collected from infants hospitalized with severe (admitted to the pediatric ICU) or moderate (maintained in the general ward) RSV disease at 5 to 9 days after enrollment. The immune response was investigated by evaluating T-lymphocyte cellularity, cytokine concentration, and viral load.Measurements and Main Results: Patients with severe disease had increased proportions of CD8 (cluster of differentiation 8)-positive T cells expressing IL-4 (Tc2) and reduced proportions of CD8+ T cells expressing IFNγ (Tc1). Nasal aspirates from patients with severe disease had reduced concentrations of IL-17. Patients with greater frequencies of Tc1, CD8+ T cells expressing IL-17 (Tc17), and CD4+ T cells expressing IL-17 (Th17) had shorter durations of hospitalization.Conclusions: Severe RSV disease was associated with distinct T-cell profiles. Tc1, Tc17, and Th17 were associated with shorter hospital stay and may play a protective role, whereas Tc2 cells may play a previously underappreciated role in pathology.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Correlación de Datos , Femenino , Humanos , Lactante , Recién Nacido , Tiempo de Internación , Masculino , Índice de Severidad de la Enfermedad
11.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L407-L418, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31644311

RESUMEN

During the newborn period, intestinal commensal bacteria influence pulmonary mucosal immunology via the gut-lung axis. Epidemiological studies have linked perinatal antibiotic exposure in human newborns to an increased risk for bronchopulmonary dysplasia, but whether this effect is mediated by the gut-lung axis is unknown. To explore antibiotic disruption of the newborn gut-lung axis, we studied how perinatal maternal antibiotic exposure influenced lung injury in a hyperoxia-based mouse model of bronchopulmonary dysplasia. We report that disruption of intestinal commensal colonization during the perinatal period promotes a more severe bronchopulmonary dysplasia phenotype characterized by increased mortality and pulmonary fibrosis. Mechanistically, metagenomic shifts were associated with decreased IL-22 expression in bronchoalveolar lavage and were independent of hyperoxia-induced inflammasome activation. Collectively, these results demonstrate a previously unrecognized influence of the gut-lung axis during the development of neonatal lung injury, which could be leveraged to ameliorate the most severe and persistent pulmonary complication of preterm birth.


Asunto(s)
Antibacterianos/efectos adversos , Displasia Broncopulmonar/complicaciones , Lesión Pulmonar/inducido químicamente , Exposición Materna , Efectos Tardíos de la Exposición Prenatal/patología , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Animales Recién Nacidos , Líquido del Lavado Bronquioalveolar , Displasia Broncopulmonar/fisiopatología , Citocinas/metabolismo , Femenino , Granulocitos/metabolismo , Hiperoxia/complicaciones , Hiperoxia/fisiopatología , Inflamasomas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Pulmón/patología , Lesión Pulmonar/microbiología , Lesión Pulmonar/fisiopatología , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Fenotipo , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/microbiología , Análisis de Supervivencia , Remodelación Vascular/efectos de los fármacos
12.
BMC Microbiol ; 20(1): 140, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487019

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infections in infants. There are still no vaccines or specific antiviral therapies against RSV, mainly due to the inadequate understanding of RSV pathogenesis. Recent data suggest a role for gut microbiota community structure in determining RSV disease severity. Our objective was to determine the gut microbial profile associated with severe RSV patients, which could be used to help identify at-risk patients and develop therapeutically protective microbial assemblages that may stimulate immuno-protection. RESULTS: We enrolled 95 infants from Le Bonheur during the 2014 to 2016 RSV season. Of these, 37 were well-babies and 58 were hospitalized with RSV. Of the RSV infected babies, 53 remained in the pediatric ward (moderate) and 5 were moved to the pediatric intensive care unit at a later date (severe). Stool samples were collected within 72 h of admission; and the composition of gut microbiota was evaluated via 16S sequencing of fecal DNA. There was a significant enrichment in S24_7, Clostridiales, Odoribacteraceae, Lactobacillaceae, and Actinomyces in RSV (moderate and severe) vs. controls. Patients with severe RSV disease had slightly lower alpha diversity (richness and evenness of the bacterial community) of the gut microbiota compared to patients with moderate RSV and healthy controls. Beta diversity (overall microbial composition) was significantly different between all RSV patients (moderate and severe) compared to controls and had significant microbial composition separating all three groups (control, moderate RSV, and severe RSV). CONCLUSIONS: Collectively, these data demonstrate that a unique gut microbial profile is associated with RSV disease and with severe RSV disease with admission to the pediatric intensive care unit. More mechanistic experiments are needed to determine whether the differences observed in gut microbiota are the cause or consequences of severe RSV disease.


Asunto(s)
Bacterias/clasificación , ARN Ribosómico 16S/genética , Infecciones por Virus Sincitial Respiratorio/microbiología , Análisis de Secuencia de ADN/métodos , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Hospitalización , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Pediátrico , Masculino , Filogenia , Índice de Severidad de la Enfermedad
13.
Am J Respir Crit Care Med ; 200(11): 1414-1423, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31237777

RESUMEN

Rationale: Studies of the immune responses at the site of respiratory syncytial virus (RSV) infection are sparse despite nearly five decades of research into understanding RSV disease.Objectives: To investigate the role of mucosal innate immune responses to RSV and respiratory viral load in infants hospitalized with the natural disease.Methods: Cytokines, viral load, and type 2 innate lymphoid cell (ILC2) levels in nasal aspirates, collected within 24 hours of enrollment, from infants hospitalized with RSV infection were quantified.Measurements and Main Results: RSV severity in infants was categorized based on admission to the general ward (moderate) or the pediatric ICU (severe). Evaluable subjects included 30 patients with severe and 63 patients with moderate disease (median age, 74 d; range, 9-297 d). ILC2s were found in the nasal aspirates of patients with severe disease (0.051% of total respiratory CD45+ cells) to a significantly greater extent than in patients with moderate disease (0.018%, P = 0.004). Levels of IL-4, IL-13, IL-33, and IL-1ß were significantly higher in nasal aspirates of patients with severe disease compared with those of patients with moderate disease. Factors associated with disease severity were gestational age (odds ratio, 0.49; 95% confidence interval, 0.29-0.82; P = 0.007) and IL-4 (odds ratio, 9.67; 95% confidence interval, 2.45-38.15; P = 0.001).Conclusions: This study shows, for the first time, that elevated levels of ILC2s is associated with infant RSV severity. The findings highlight the dominance of type-2 responses to RSV infection in infants and suggest an important role of ILC2 in shaping the immune response early during RSV infection.


Asunto(s)
Bronquiolitis Viral/inmunología , Linfocitos/patología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios , Bronquiolitis Viral/patología , Femenino , Edad Gestacional , Humanos , Inmunidad Innata , Lactante , Recién Nacido , Interleucinas/metabolismo , Linfocitos/inmunología , Masculino , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Infecciones por Virus Sincitial Respiratorio/patología , Índice de Severidad de la Enfermedad , Carga Viral
14.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L418-L427, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30628485

RESUMEN

We previously showed that mice deficient in apoptosis signal-regulating kinase-1 (ASK1) were partially protected against ventilator-induced lung injury. Because ASK1 can promote both cell death and inflammation, we hypothesized that ASK1 activation regulates inflammasome-mediated inflammation. Mice deficient in ASK1 expression (ASK1-/-) exhibited significantly less inflammation and lung injury (as measured by neutrophil infiltration, IL-6, and IL-1ß) in response to treatment with inhaled lipopolysaccharide (LPS) compared with wild-type (WT) mice. To determine whether this proinflammatory response was mediated by ASK1, we investigated inflammasome-mediated responses to LPS in primary macrophages and bone marrow-derived macrophages (BMDMs) from WT and ASK1-/- mice, as well as the mouse alveolar macrophage cell line MH-S. Cells were treated with LPS alone for priming or LPS followed by ATP for activation. When macrophages were stimulated with LPS followed by ATP to activate the inflammasome, we found a significant increase in secreted IL-1ß from WT cells compared with ASK1-deficient cells. LPS priming stimulated an increase in NOD-like receptor 3 (NLRP3) and pro-IL-1ß in WT BMDMs, but expression of NLRP3 was significantly decreased in ASK1-/- BMDMs. Subsequent ATP treatment stimulated an increase in cleaved caspase-1 and IL-1ß in WT BMDMs compared with ASK1-/- BMDMs. Similarly, treatment of MH-S cells with LPS + ATP caused an increase in both cleaved caspase-1 and IL-1ß that was diminished by the ASK-1 inhibitor NQDI1. These results demonstrate, for the first time, that ASK1 promotes inflammasome priming.


Asunto(s)
Apoptosis/efectos de los fármacos , Inflamasomas/efectos de los fármacos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Macrófagos/efectos de los fármacos , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , MAP Quinasa Quinasa Quinasa 5/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
15.
Hum Mol Genet ; 26(13): 2526-2540, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28453658

RESUMEN

Duchenne muscular dystrophy (DMD) is a neuromuscular disease that predominantly affects boys as a result of mutation(s) in the dystrophin gene. DMD is characterized by musculoskeletal and cardiopulmonary complications, resulting in shorter life-span. Boys afflicted by DMD typically exhibit symptoms within 3-5 years of age and declining physical functions before attaining puberty. We hypothesized that rapidly deteriorating health of pre-pubertal boys with DMD could be due to diminished anabolic actions of androgens in muscle, and that intervention with an androgen receptor (AR) agonist will reverse musculoskeletal complications and extend survival. While castration of dystrophin and utrophin double mutant (mdx-dm) mice to mimic pre-pubertal nadir androgen condition resulted in premature death, maintenance of androgen levels extended the survival. Non-steroidal selective-AR modulator, GTx-026, which selectively builds muscle and bone was tested in X-linked muscular dystrophy mice (mdx). GTx-026 significantly increased body weight, lean mass and grip strength by 60-80% over vehicle-treated mdx mice. While vehicle-treated castrated mdx mice exhibited cardiopulmonary impairment and fibrosis of heart and lungs, GTx-026 returned cardiopulmonary function and intensity of fibrosis to healthy control levels. GTx-026 elicits its musculoskeletal effects through pathways that are distinct from dystrophin-regulated pathways, making AR agonists ideal candidates for combination approaches. While castration of mdx-dm mice resulted in weaker muscle and shorter survival, GTx-026 treatment increased the muscle mass, function and survival, indicating that androgens are important for extended survival. These preclinical results support the importance of androgens and the need for intervention with AR agonists to treat DMD-affected boys.


Asunto(s)
Andrógenos/metabolismo , Distrofia Muscular de Duchenne/genética , Andrógenos/genética , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Fibrosis , Masculino , Ratones , Ratones Endogámicos mdx , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/metabolismo , Receptores Androgénicos/metabolismo , Maduración Sexual , Utrofina/genética
16.
Paediatr Perinat Epidemiol ; 33(4): 262-270, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31206733

RESUMEN

BACKGROUND: Viral bronchiolitis is a common respiratory infection that often affects term, otherwise healthy infants. A small literature suggests maternal stress during pregnancy is associated with bronchiolitis. However, the association between maternal exposure to lifetime traumatic stress, including traumatic events occurring in childhood or throughout the life course, and bronchiolitis has not been studied previously. OBJECTIVES: To investigate the association between maternal exposure to total lifetime and childhood traumatic stress events and infant bronchiolitis. METHODS: We studied mother-infant dyads enrolled in a prospective prenatal cohort, recruited 2006-2011, and Tennessee Medicaid. During pregnancy, we assessed maternal lifetime exposure to types of traumatic events by questionnaire. We captured bronchiolitis diagnoses in term, non-low birthweight infants' first 12 months using linked Medicaid data. In separate models, we assessed the association of maternal lifetime traumatic events (0 to 20 types) and a subset of traumatic events that occurred during childhood (0 to 3: family violence, sexual, and physical abuse) and infant bronchiolitis using multivariable log-binomial models. RESULTS: Of 629 women, 85% were African American. The median count (interquartile range) of lifetime traumatic events was 3 (2, 5); 42% reported ≥1 childhood traumatic event. Among infants, 22% had a bronchiolitis diagnosis (0 to 2 lifetime traumatic events: 24%; 3 events: 20%; 4 to 5 events: 18%; 6 or more events: 24%). Total maternal lifetime traumatic events were not associated with bronchiolitis in multivariable analyses. For maternal childhood traumatic events, the risk of infant bronchiolitis increased with number of event types reported: adjusted Risk ratios were 1.12 (95% confidence interval [CI] 0.80, 1.59), 1.31 (95% CI 0.83, 2.07), and 2.65 (95% CI 1.45, 4.85) for 1, 2, and 3 events, respectively, vs none. CONCLUSIONS: Infants born to women reporting multiple types of childhood trauma were at higher risk for bronchiolitis. Further research is needed to explore intergenerational effects of traumatic experiences.


Asunto(s)
Adultos Sobrevivientes de Eventos Adversos Infantiles/psicología , Bronquiolitis/epidemiología , Madres/psicología , Estrés Psicológico/psicología , Adaptación Psicológica , Adulto , Femenino , Humanos , Recién Nacido , Madres/estadística & datos numéricos , Embarazo , Estudios Prospectivos , Estrés Psicológico/epidemiología , Estrés Psicológico/fisiopatología
17.
Am J Respir Crit Care Med ; 198(2): 256-263, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29546996

RESUMEN

Pneumonia is a complex pulmonary disease in need of new clinical approaches. Although triggered by a pathogen, pneumonia often results from dysregulations of host defense that likely precede infection. The coordinated activities of immune resistance and tissue resilience then dictate whether and how pneumonia progresses or resolves. Inadequate or inappropriate host responses lead to more severe outcomes such as acute respiratory distress syndrome and to organ dysfunction beyond the lungs and over extended time frames after pathogen clearance, some of which increase the risk for subsequent pneumonia. Improved understanding of such host responses will guide the development of novel approaches for preventing and curing pneumonia and for mitigating the subsequent pulmonary and extrapulmonary complications of pneumonia. The NHLBI assembled a working group of extramural investigators to prioritize avenues of host-directed pneumonia research that should yield novel approaches for interrupting the cycle of unhealthy decline caused by pneumonia. This report summarizes the working group's specific recommendations in the areas of pneumonia susceptibility, host response, and consequences. Overarching goals include the development of more host-focused clinical approaches for preventing and treating pneumonia, the generation of predictive tools (for pneumonia occurrence, severity, and outcome), and the elucidation of mechanisms mediating immune resistance and tissue resilience in the lung. Specific areas of research are highlighted as especially promising for making advances against pneumonia.


Asunto(s)
Susceptibilidad a Enfermedades/fisiopatología , Interacciones Microbiota-Huesped/fisiología , Pulmón/fisiopatología , Neumonía/fisiopatología , Informe de Investigación , Síndrome de Dificultad Respiratoria/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Infecciones Bacterianas/fisiopatología , Congresos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos , Virosis/fisiopatología
18.
J Infect Dis ; 218(11): 1822-1832, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29554301

RESUMEN

Background: Respiratory syncytial virus (RSV) is a common cause of respiratory tract infection in vulnerable populations. Natural killer (NK) cells and dendritic cells (DC) are important for the effector functions of both cell types following infection. Methods: Wild-type and NKG2D-deficient mice were infected with RSV. Lung pathology was assessed by histology. Dendritic cell function and phenotype were evaluated by enzyme-linked immunosorbent assay and flow cytometry. The expression of NKG2D ligands on lung and lymph node DCs was measured by immunostaining and flow cytometry. Adoptive transfer experiments were performed to assess the importance of NKG2D-dependent DC function in RSV infection. Results: NKG2D-deficient mice exhibited greater lung pathology, marked by the accumulation of DCs following RSV infection. Dendritic cells isolated from NKG2D-deficient mice had impaired responses toward Toll-like receptor ligands. Dendritic cells expressed NKG2D ligands on their surface, which was further increased in NKG2D-deficient mice and during RSV infection. Adoptive transfer of DCs isolated from wild-type mice into the airways of NKG2D-deficient mice ameliorated the enhanced inflammation in NKG2D-deficient mice after RSV infection. Conclusion: NKG2D-dependent interactions with DCs control the phenotype and function of DCs and play a critical role in pulmonary host defenses against RSV infection.


Asunto(s)
Células Dendríticas/inmunología , Pulmón/patología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Infecciones por Virus Sincitial Respiratorio , Animales , Células Dendríticas/metabolismo , Femenino , Interleucina-12/inmunología , Interleucina-12/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología
19.
Am J Physiol Heart Circ Physiol ; 315(3): H581-H589, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906223

RESUMEN

Pulmonary hypertension (PH) has been observed in up to 75% of infants with moderate to severe respiratory syncytial virus (RSV) bronchiolitis and is associated with significant morbidity and mortality in infants with congenital heart disease. The purpose of the present study was to establish a mouse model of PH secondary to RSV bronchiolitis that mimics the disease etiology as it occurs in infants. Neonatal mice were infected with RSV at 5 days of age and then reinfected 4 wk later. Serum-free medium was administered to age-matched mice as a control. Echocardiography and right ventricular systolic pressure (RVSP) measurements via right jugular vein catheterization were conducted 5 and 6 days after the second infection, respectively. Peripheral capillary oxygen saturation monitoring did not indicate hypoxia at 2-4 days post-RSV infection, before reinfection, and at 2-7 days after reinfection. RSV-infected mice had significantly higher RVSP than control mice. Pulsed-wave Doppler recording of the pulmonary blood flow by echocardiogram demonstrated a significantly shortened pulmonary artery acceleration time and decreased pulmonary artery acceleration time-to-ejection time ratio in RSV-infected mice. Morphometry showed that RSV-infected mice exhibited a significantly higher pulmonary artery medial wall thickness and had an increased number of muscularized pulmonary arteries compared with control mice. These findings, confirmed by RVSP measurements, demonstrate the development of PH in the lungs of mice infected with RSV as neonates. This animal model can be used to study the pathogenesis of PH secondary to RSV bronchiolitis and to assess the effect of treatment interventions. NEW & NOTEWORTHY This is the first mouse model of respiratory syncytial virus-induced pulmonary hypertension, to our knowledge. This model will allow us to decipher molecular mechanisms responsible for the pathogenesis of pulmonary hypertension secondary to respiratory syncytial virus bronchiolitis with the use of knockout and/or transgenic animals and to monitor therapeutic effects with echocardiography.


Asunto(s)
Bronquiolitis Viral/complicaciones , Modelos Animales de Enfermedad , Hipertensión Pulmonar/virología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Animales , Presión Sanguínea , Bronquiolitis Viral/patología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Ratones , Ratones Endogámicos BALB C , Arteria Pulmonar/patología , Infecciones por Virus Sincitial Respiratorio/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA