Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Med Chem ; 258: 115579, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37399709

RESUMEN

Tuberculosis remains a major public health problem and one of the top ten causes of death worldwide. The alarming increase in multidrug-resistant and extensively resistant variants (MDR, pre-XDR, and XDR) makes the disease more difficult to treat and control. New drugs that act against MDR/XDR strains are needed for programs to contain this major epidemic. The present study aimed to evaluate new compounds related to dihydro-sphingosine and ethambutol against sensitive and pre-XDR Mycobacterium strains, as well as to characterize the pharmacological activity through in vitro and in silico approaches in mmpL3 protein. Of the 48 compounds analyzed, 11 demonstrated good to moderate activity on sensitive and MDR Mycobacterium tuberculosis (Mtb), with a Minimum Inhibitory Concentration (MIC) ranging from 1.5 to 8 µM. They presented 2 to 14 times greater potency of activity when compared to ethambutol in pre-XDR strain, and demonstrated a selectivity index varying between 2.21 and 82.17. The substance 12b when combined with rifampicin, showed a synergistic effect (FICI = 0.5) on sensitive and MDR Mtb. It has also been shown to have a concentration-dependent intracellular bactericidal effect, and a time-dependent bactericidal effect in M. smegmatis and pre-XDR M. tuberculosis. The binding mode of the compounds in its cavity was identified through molecular docking and using a predicted structural model of mmpL3. Finally, we observed by transmission electron microscopy the induction of damage to the cell wall integrity of M. tuberculosis treated with the substance 12b. With these findings, we demonstrate the potential of a 2-aminoalkanol derivative to be a prototype substance and candidate for further optimization of molecular structure and anti-tubercular activity in preclinical studies.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Etambutol/farmacología , Antituberculosos/química , Esfingosina/farmacología , Simulación del Acoplamiento Molecular , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple
2.
J Biomed Nanotechnol ; 17(8): 1699-1710, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34544546

RESUMEN

The present study describes the use of fucoidan, a negative sulfated polysaccharide, as a coating material for the development of liposomes targeted to macrophages infected with Mycobacterium tuberculosis. First, fucoidan was chemically modified to obtain a hydrophobized-fucoidan derivative (cholesteryl-fucoidan) using a two-step microwave-assisted (µW) method. The total reaction time was decreased from 14 hours to 1 hour while maintaining the overall yield. Cholesterylfucoidan was then used to prepare surface-modified liposomes containing usnic acid (UA-LipoFuc), an antimicrobial lichen derivative. UA-LipoFuc was evaluated for mean particle size, polydispersity index (PDI), surface charge (ζ), and UA encapsulation efficiency. In addition, a cytotoxicity study, competition assay and an evaluation of antimycobacterial activity against macrophages infected with M. tuberculosis (H37Ra) were performed. When the amount of fucoidan was increased (from 5 to 20 mg), vesicle size increased (from 168 ± 2.82 nm to 1.18 ± 0.01 µm). Changes in from +20 ± 0.41 mV for uncoated liposomes to -5.41 ± 0.23 mV for UA-LipoFuc suggested that the fucoidan was placed on the surface of the liposomes. UA-LipoFuc exhibited a lower IC50 (8.26 ± 1.11 µM) than uncoated liposomes (18.37 ± 3.34 µM), probably due to its higher uptake. UA-LipoFuc5 was internalized through the C-type carbohydrate recognition domain of the cell membrane. Finally, usnic acid, both in its free form and encapsulated in fucoidan-coated liposomes (UA-LipoFuc5), was effective against infected macrophages. Hence, this preliminary investigation suggests that encapsulated usnic acid will aid in further studies related to infected macrophages and may be a potential option for tuberculosis treatment.


Asunto(s)
Antiinfecciosos , Mycobacterium tuberculosis , Benzofuranos , Liposomas , Macrófagos , Polisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA