RESUMEN
Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.
Asunto(s)
Microcefalia , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células HEK293 , Serina-Treonina Quinasas TORRESUMEN
We have previously shown that casein kinase 2 (CK2) negatively regulates dopamine D1 and adenosine A2A receptor signaling in the striatum. Ablation of CK2 in D1 receptor-positive striatal neurons caused enhanced locomotion and exploration at baseline, whereas CK2 ablation in D2 receptor-positive neurons caused increased locomotion after treatment with A2A antagonist, caffeine. Because both, D1 and A2A receptors, play major roles in the cellular responses to l-DOPA in the striatum, these findings prompted us to examine the impact of CK2 ablation on the effects of l-DOPA treatment in the unilateral 6-OHDA lesioned mouse model of Parkinson's disease. We report here that knock-out of CK2 in striatonigral neurons reduces the severity of l-DOPA-induced dyskinesia (LID), a finding that correlates with lowered pERK but unchanged pPKA substrate levels in D1 medium spiny neurons as well as in cholinergic interneurons. In contrast, lack of CK2 in striatopallidal neurons enhances LID and ERK phosphorylation. Coadministration of caffeine with a low dose of l-DOPA reduces dyskinesia in animals with striatopallidal knock-out to wild-type levels, suggesting a dependence on adenosine receptor activity. We also detect reduced Golf levels in the striatonigral but not in the striatopallidal knock-out in response to l-DOPA treatment.Our work shows, in a rodent model of PD, that treatment-induced dyskinesia and striatal ERK activation are bidirectionally modulated by ablating CK2 in D1- or D2-positive projection neurons, in male and female mice. The results reveal that CK2 regulates signaling events critical to LID in each of the two main populations of striatal neurons.SIGNIFICANCE STATEMENT To date, l-DOPA is the most effective treatment for PD. Over time, however, its efficacy decreases, and side effects including l-DOPA-induced dyskinesia (LID) increase, affecting up to 78% of patients within 10 years of therapy (Hauser et al., 2007). It is understood that supersensitivity of the striatonigral pathway underlies LID, however, D2 agonists were also shown to induce LID (Bezard et al., 2001; Delfino et al., 2004). Our work implicates a novel player in the expression of LID, the kinase CK2: knock-out of CK2 in striatonigral and striatopallidal neurons has opposing effects on LID. The bidirectional modulation of dyskinesia reveals a central role for CK2 in striatal physiology and indicates that both pathways contribute to LID.
Asunto(s)
Quinasa de la Caseína II/fisiología , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Receptores de Dopamina D1/biosíntesis , Receptores de Dopamina D2/biosíntesis , Animales , Quinasa de la Caseína II/deficiencia , Cuerpo Estriado/efectos de los fármacos , Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Discinesia Inducida por Medicamentos/genética , Femenino , Expresión Génica , Levodopa/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/genéticaRESUMEN
INTRODUCTION: Thanks to advances in antiretroviral treatment, children with HIV infections through vertical transmission have improved their life expectancy. However, new challenges have emerged. We propose this study in order to determine the psychosocial aspects and knowledge of infections in a cohort of adolescents with vertically transmitted HIV infections. METHODS: Patients with vertically-acquired HIV infection between 12 and 19 years old were included. Data were obtained through semi-structured interviews and a Strengths and Difficulties Questionnaire for emotional and behavioral disorders screening. RESULTS: We evaluated 96 patients (58% females) with a median age of 15 years (11-19.1) and a median age at diagnosis of 1.70 years (0-12.2). The median CD4 count was 626cells/mm(3) (132-998), and the viral load was<50cp/ml in 72% of patients. Among them, 90% attended school and 60% repeated at least one course. Although 81% of them knew of their diagnosis, only 30% understood their disease, with 18.2% having discussed it with friends. Six unwanted pregnancies occurred during the study period. Strengths and Difficulties Questionnaire showed hyperactivity risk in 33%. CONCLUSION: A high percentage of adolescents show difficulties in several areas (disease knowledge, peer relationship, school failure...) that can have an impact on their adult lives. Further studies are needed to evaluate their origin and development in depth, as well as interventions to modify this situation.
Asunto(s)
Infecciones por VIH/psicología , Infecciones por VIH/transmisión , Transmisión Vertical de Enfermedad Infecciosa , Adolescente , Niño , Femenino , Infecciones por VIH/complicaciones , Humanos , Masculino , Trastornos Mentales/epidemiología , Trastornos Mentales/etiología , Prevalencia , Adulto JovenRESUMEN
Innovation in pharmaceutical therapeutics is critical for the treatment of serious diseases with unmet medical need. To accelerate the approval of these innovative treatments, regulatory agencies throughout the world are increasingly adopting the use of expedited pathways and collaborative regulatory reviews. These pathways are primarily driven by promising clinical results but become challenging for Chemistry, Manufacturing, and Controls (CMC) information in regulatory submissions. Condensed and shifting timelines present constraints that require new approaches to the management of regulatory filings. This article emphasizes technological advances that have the potential to tackle the underlying inefficiencies in the regulatory filing eco-system. Structured content and data management (SCDM) is highlighted as a foundation for technologies that can ease the burden on both sponsors and regulators by streamlining data usage in regulatory submissions. Re-mapping of information technology infrastructure will improve the usability of data by moving away from document-based filings towards electronic data libraries. Although the inefficiencies of the current regulatory filing eco-system are more evident for products that are filed using expedited pathways, it is envisioned that the more widespread adoption of SCDM, across standard filing and review processes, will improve overall efficiency and speed in the compilation and review of regulatory submissions.
RESUMEN
The mechanistic target of rapamycin (mTOR) signals through the mTOR complex 1 (mTORC1) and the mTOR complex 2 to maintain cellular and organismal homeostasis. Failure to finely tune mTOR activity results in metabolic dysregulation and disease. While there is substantial understanding of the molecular events leading mTORC1 activation at the lysosome, remarkably little is known about what terminates mTORC1 signaling. Here, we show that the AAA + ATPase Thorase directly binds mTOR, thereby orchestrating the disassembly and inactivation of mTORC1. Thorase disrupts the association of mTOR to Raptor at the mitochondria-lysosome interface and this action is sensitive to amino acids. Lack of Thorase causes accumulation of mTOR-Raptor complexes and altered mTORC1 disassembly/re-assembly dynamics upon changes in amino acid availability. The resulting excessive mTORC1 can be counteracted with rapamycin in vitro and in vivo. Collectively, we reveal Thorase as a key component of the mTOR pathway that disassembles and thus inhibits mTORC1.
Asunto(s)
Aminoácidos , Serina-Treonina Quinasas TOR , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Aminoácidos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación , Proteína Reguladora Asociada a mTOR/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
The dopamine D5 receptor (D5R) is a Gαs-coupled dopamine receptor belonging to the dopamine D1-like receptor family. Together with the dopamine D2 receptor it is highly expressed in striatal cholinergic interneurons and therefore is poised to be a positive regulator of cholinergic activity in response to L-DOPA in the dopamine-depleted parkinsonian brain. Tonically active cholinergic interneurons become dysregulated during chronic L-DOPA administration and participate in the expression of L-DOPA induced dyskinesia. The molecular mechanisms involved in this process have not been elucidated, however a correlation between dyskinesia severity and pERK expression in cholinergic cells has been described. To better understand the function of the D5 receptor and how it affects cholinergic interneurons in L-DOPA induced dyskinesia, we used D5R knockout mice that were rendered parkinsonian by unilateral 6-OHDA injection. In the KO mice, expression of pERK was strongly reduced indicating that activation of these cells is at least in part driven by the D5 receptor. Similarly, pS6, another marker for the activity status of cholinergic interneurons was also reduced. However, mice lacking D5R exhibited slightly worsened locomotor performance in response to L-DOPA and enhanced LID scores. Our findings suggest that D5R can modulate L-DOPA induced dyskinesia and is a critical activator of CINs via pERK and pS6.
Asunto(s)
Dopamina/metabolismo , Discinesia Inducida por Medicamentos/genética , Levodopa/efectos adversos , Receptores de Dopamina D5/genética , Animales , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/patología , Humanos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Oxidopamina/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patologíaRESUMEN
The regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking affects multiple brain functions, such as learning and memory. We have previously shown that Thorase plays an important role in the internalization of AMPARs from the synaptic membrane. Here, we show that N-methyl-d-aspartate receptor (NMDAR) activation leads to increased S-nitrosylation of Thorase and N-ethylmaleimide-sensitive factor (NSF). S-nitrosylation of Thorase stabilizes Thorase-AMPAR complexes and enhances the internalization of AMPAR and interaction with protein-interacting C kinase 1 (PICK1). S-nitrosylated NSF is dependent on the S-nitrosylation of Thorase via trans-nitrosylation, which modulates the surface insertion of AMPARs. In the presence of the S-nitrosylation-deficient C137L Thorase mutant, AMPAR trafficking, long-term potentiation, and long-term depression are impaired. Overall, our data suggest that both S-nitrosylation and interactions of Thorase and NSF/PICK1 are required to modulate AMPAR-mediated synaptic plasticity. This study provides critical information that elucidates the mechanism underlying Thorase and NSF-mediated trafficking of AMPAR complexes.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Membrana Celular/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Receptores AMPA/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Cisteína/metabolismo , Endocitosis/efectos de los fármacos , Glutatión/metabolismo , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , N-Metilaspartato/farmacología , Plasticidad Neuronal , Óxido Nítrico/metabolismo , Nitrosación , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , S-Nitrosoglutatión/metabolismoRESUMEN
We have recently described an A350V mutation in IQSEC2 associated with intellectual disability, autism and epilepsy. We sought to understand the molecular pathophysiology of this mutation with the goal of developing targets for drug intervention. We demonstrate here that the A350V mutation results in interference with the binding of apocalmodulin to the IQ domain of IQSEC2. We further demonstrate that this mutation results in constitutive activation of the guanine nucleotide exchange factor (GEF) activity of IQSEC2 resulting in increased production of the active form of Arf6. In a CRISPR generated mouse model of the A350V IQSEC2 mutation, we demonstrate that the surface expression of GluA2 AMPA receptors in mouse hippocampal tissue was significantly reduced in A350V IQSEC2 mutant mice compared to wild type IQSEC2 mice and that there is a significant reduction in basal synaptic transmission in the hippocampus of A350V IQSEC2 mice compared to wild type IQSEC2 mice. Finally, the A350V IQSEC2 mice demonstrated increased activity, abnormal social behavior and learning as compared to wild type IQSEC2 mice. These findings suggest a model of how the A350V mutation in IQSEC2 may mediate disease with implications for targets for drug therapy. These studies provide a paradigm for a personalized approach to precision therapy for a disease that heretofore has no therapy.