Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Gut ; 71(12): 2502-2517, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35477539

RESUMEN

OBJECTIVE: Stroma-rich tumours represent a poor prognostic subtype in stage II/III colon cancer (CC), with high relapse rates and limited response to standard adjuvant chemotherapy. DESIGN: To address the lack of efficacious therapeutic options for patients with stroma-rich CC, we stratified our human tumour cohorts according to stromal content, enabling identification of the biology underpinning relapse and potential therapeutic vulnerabilities specifically within stroma-rich tumours that could be exploited clinically. Following human tumour-based discovery and independent clinical validation, we use a series of in vitro and stroma-rich in vivo models to test and validate the therapeutic potential of elevating the biology associated with reduced relapse in human tumours. RESULTS: By performing our analyses specifically within the stroma-rich/high-fibroblast (HiFi) subtype of CC, we identify and validate the clinical value of a HiFi-specific prognostic signature (HPS), which stratifies tumours based on STAT1-related signalling (High-HPS v Low-HPS=HR 0.093, CI 0.019 to 0.466). Using in silico, in vitro and in vivo models, we demonstrate that the HPS is associated with antigen processing and presentation within discrete immune lineages in stroma-rich CC, downstream of double-stranded RNA and viral response signalling. Treatment with the TLR3 agonist poly(I:C) elevated the HPS signalling and antigen processing phenotype across in vitro and in vivo models. In an in vivo model of stroma-rich CC, poly(I:C) treatment significantly increased systemic cytotoxic T cell activity (p<0.05) and reduced liver metastases (p<0.0002). CONCLUSION: This study reveals new biological insight that offers a novel therapeutic option to reduce relapse rates in patients with the worst prognosis CC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias del Colon , Humanos , Biomarcadores de Tumor/genética , Células del Estroma/patología , Recurrencia Local de Neoplasia/prevención & control , Recurrencia Local de Neoplasia/patología , Neoplasias del Colon/patología , Pronóstico
2.
Gut ; 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477863

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC) is increasingly associated with non-alcoholic steatohepatitis (NASH). HCC immunotherapy offers great promise; however, recent data suggests NASH-HCC may be less sensitive to conventional immune checkpoint inhibition (ICI). We hypothesised that targeting neutrophils using a CXCR2 small molecule inhibitor may sensitise NASH-HCC to ICI therapy. DESIGN: Neutrophil infiltration was characterised in human HCC and mouse models of HCC. Late-stage intervention with anti-PD1 and/or a CXCR2 inhibitor was performed in murine models of NASH-HCC. The tumour immune microenvironment was characterised by imaging mass cytometry, RNA-seq and flow cytometry. RESULTS: Neutrophils expressing CXCR2, a receptor crucial to neutrophil recruitment in acute-injury, are highly represented in human NASH-HCC. In models of NASH-HCC lacking response to ICI, the combination of a CXCR2 antagonist with anti-PD1 suppressed tumour burden and extended survival. Combination therapy increased intratumoural XCR1+ dendritic cell activation and CD8+ T cell numbers which are associated with anti-tumoural immunity, this was confirmed by loss of therapeutic effect on genetic impairment of myeloid cell recruitment, neutralisation of the XCR1-ligand XCL1 or depletion of CD8+ T cells. Therapeutic benefit was accompanied by an unexpected increase in tumour-associated neutrophils (TANs) which switched from a protumour to anti-tumour progenitor-like neutrophil phenotype. Reprogrammed TANs were found in direct contact with CD8+ T cells in clusters that were enriched for the cytotoxic anti-tumoural protease granzyme B. Neutrophil reprogramming was not observed in the circulation indicative of the combination therapy selectively influencing TANs. CONCLUSION: CXCR2-inhibition induces reprogramming of the tumour immune microenvironment that promotes ICI in NASH-HCC.

3.
J Immunol ; 194(5): 2190-8, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25624456

RESUMEN

Germline GATA2 mutations have been identified as the cause of familial syndromes with immunodeficiency and predisposition to myeloid malignancies. GATA2 mutations appear to cause loss of function of the mutated allele leading to haploinsufficiency; however, this postulate has not been experimentally validated as the basis of these syndromes. We hypothesized that mutations that are translated into abnormal proteins could affect the transcription of GATA2, triggering GATA2 deficiency. Chromatin immunoprecipitation and luciferase assays showed that the human GATA2 protein activates its own transcription through a specific region located at -2.4 kb, whereas the p.Thr354Met, p.Thr355del, and p.Arg396Gln germline mutations impair GATA2 promoter activation. Accordingly, GATA2 expression was decreased to ∼58% in a patient with p.Arg396Gln, compared with controls. p.Arg396Gln is the second most common mutation in these syndromes, and no previous functional analyses have been performed. We therefore analyzed p.Arg396Gln. Our data show that p.Arg396Gln is a loss-of-function mutation affecting DNA-binding ability and, as a consequence, it fails to maintain the immature characteristics of hematopoietic stem and progenitor cells, which could result in defects in this cell compartment. In conclusion, we show that human GATA2 binds to its own promoter, activating its transcription, and that the aforementioned mutations impair the transcription of GATA2. Our results indicate that they can affect other GATA2 target genes, which could partially explain the variability of symptoms in these diseases. Moreover, we show that p.Arg396Gln is a loss-of-function mutation, which is unable to retain the progenitor phenotype in cells where it is expressed.


Asunto(s)
Factor de Transcripción GATA2/genética , Mutación de Línea Germinal , Síndromes de Inmunodeficiencia/inmunología , Infección por Mycobacterium avium-intracellulare/inmunología , Transcripción Genética , Alelos , Sitios de Unión , Línea Celular Tumoral , Femenino , Factor de Transcripción GATA2/inmunología , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Humanos , Síndromes de Inmunodeficiencia/complicaciones , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/patología , Persona de Mediana Edad , Modelos Moleculares , Complejo Mycobacterium avium/inmunología , Infección por Mycobacterium avium-intracellulare/complicaciones , Infección por Mycobacterium avium-intracellulare/genética , Infección por Mycobacterium avium-intracellulare/patología , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal
4.
Cancer Res Commun ; 4(2): 588-606, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38358352

RESUMEN

Neutrophils are a highly heterogeneous cellular population. However, a thorough examination of the different transcriptional neutrophil states between health and malignancy has not been performed. We utilized single-cell RNA sequencing of human and murine datasets, both publicly available and independently generated, to identify neutrophil transcriptomic subtypes and developmental lineages in health and malignancy. Datasets of lung, breast, and colorectal cancer were integrated to establish and validate neutrophil gene signatures. Pseudotime analysis was used to identify genes driving neutrophil development from health to cancer. Finally, ligand-receptor interactions and signaling pathways between neutrophils and other immune cell populations in primary colorectal cancer and metastatic colorectal cancer were investigated. We define two main neutrophil subtypes in primary tumors: an activated subtype sharing the transcriptomic signatures of healthy neutrophils; and a tumor-specific subtype. This signature is conserved in murine and human cancer, across different tumor types. In colorectal cancer metastases, neutrophils are more heterogeneous, exhibiting additional transcriptomic subtypes. Pseudotime analysis implicates IL1ß/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and metastasis, with effects on T-cell effector function. Functional analysis of neutrophil-tumoroid cocultures and T-cell proliferation assays using orthotopic metastatic mouse models lacking Cxcr2 in neutrophils support our transcriptional analysis. We propose that the emergence of metastatic-specific neutrophil subtypes is driven by the IL1ß/CXCL8/CXCR2 axis, with the evolution of different transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better understanding of neutrophil transcriptomic programming could optimize immunotherapeutic interventions into early and late interventions, targeting different neutrophil states. SIGNIFICANCE: We identify two recurring neutrophil populations and demonstrate their staged evolution from health to malignancy through the IL1ß/CXCL8/CXCR2 axis, allowing for immunotherapeutic neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in metastasis.


Asunto(s)
Neoplasias Colorrectales , Neutrófilos , Animales , Ratones , Humanos , Recurrencia Local de Neoplasia/metabolismo , Transducción de Señal/genética , Neoplasias Colorrectales/genética , Análisis de la Célula Individual
5.
Haematologica ; 97(4): 543-50, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22133779

RESUMEN

BACKGROUND: Protein phosphatase 2A is a novel potential therapeutic target in several types of chronic and acute leukemia, and its inhibition is a common event in acute myeloid leukemia. Upregulation of SET is essential to inhibit protein phosphatase 2A in chronic myeloid leukemia, but its importance in acute myeloid leukemia has not yet been explored. DESIGN AND METHODS: We quantified SET expression by real time reverse transcriptase polymerase chain reaction in 214 acute myeloid leukemia patients at diagnosis. Western blot was performed in acute myeloid leukemia cell lines and in 16 patients' samples. We studied the effect of SET using cell viability assays. Bioinformatics analysis of the SET promoter, chromatin immunoprecipitation, and luciferase assays were performed to evaluate the transcriptional regulation of SET. RESULTS: SET overexpression was found in 60/214 patients, for a prevalence of 28%. Patients with SET overexpression had worse overall survival (P<0.01) and event-free survival (P<0.01). Deregulation of SET was confirmed by western blot in both cell lines and patients' samples. Functional analysis showed that SET promotes proliferation, and restores cell viability after protein phosphatase 2A overexpression. We identified EVI1 overexpression as a mechanism involved in SET deregulation in acute myeloid leukemia cells. CONCLUSIONS: These findings suggest that SET overexpression is a key mechanism in the inhibition of PP2A in acute myeloid leukemia, and that EVI1 overexpression contributes to the deregulation of SET. Furthermore, SET overexpression is associated with a poor outcome in acute myeloid leukemia, and it can be used to identify a subgroup of patients who could benefit from future treatments based on PP2A activators.


Asunto(s)
Expresión Génica , Chaperonas de Histonas/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Factores de Transcripción/genética , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Proteínas de Unión al ADN , Femenino , Regulación Leucémica de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico , Proteína Fosfatasa 2/antagonistas & inhibidores , Recurrencia , Adulto Joven
6.
Cancer Cell ; 36(3): 319-336.e7, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31526760

RESUMEN

The metastatic process of colorectal cancer (CRC) is not fully understood and effective therapies are lacking. We show that activation of NOTCH1 signaling in the murine intestinal epithelium leads to highly penetrant metastasis (100% metastasis; with >80% liver metastases) in KrasG12D-driven serrated cancer. Transcriptional profiling reveals that epithelial NOTCH1 signaling creates a tumor microenvironment (TME) reminiscent of poorly prognostic human CRC subtypes (CMS4 and CRIS-B), and drives metastasis through transforming growth factor (TGF) ß-dependent neutrophil recruitment. Importantly, inhibition of this recruitment with clinically relevant therapeutic agents blocks metastasis. We propose that NOTCH1 signaling is key to CRC progression and should be exploited clinically.


Asunto(s)
Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Receptor Notch1/metabolismo , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/mortalidad , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/secundario , Masculino , Ratones , Mutación , Activación Neutrófila/efectos de los fármacos , Activación Neutrófila/genética , Neutrófilos/inmunología , Pronóstico , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptor Notch1/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Análisis de Supervivencia , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
7.
Stem Cell Reports ; 10(1): 151-165, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29276152

RESUMEN

In vivo hematopoietic generation occurs in waves of primitive and definitive cell emergence. Differentiation cultures of pluripotent embryonic stem cells (ESCs) offer an accessible source of hematopoietic cells for blood-related research and therapeutic strategies. However, despite many approaches, it remains a goal to robustly generate hematopoietic progenitor and stem cells (HP/SCs) in vitro from ESCs. This is partly due to the inability to efficiently promote, enrich, and/or molecularly direct hematopoietic emergence. Here, we use Gata2Venus (G2V) and Ly6a(SCA1)GFP (LG) reporter ESCs, derived from well-characterized mouse models of HP/SC emergence, to show that during in vitro differentiation they report emergent waves of primitive hematopoietic progenitor cells (HPCs), definitive HPCs, and B-lymphoid cell potential. These results, facilitated by enrichment of single and double reporter cells with HPC properties, demonstrate that in vitro ESC differentiation approximates the waves of hematopoietic cell generation found in vivo, thus raising possibilities for enrichment of rare ESC-derived HP/SCs.


Asunto(s)
Diferenciación Celular , Factor de Transcripción GATA2 , Genes Reporteros , Células Madre Hematopoyéticas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Animales , Antígenos Ly/genética , Antígenos Ly/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología
8.
Biochim Biophys Acta Gene Regul Mech ; 1860(6): 721-729, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28391050

RESUMEN

Transcriptional activation of the EVI1 oncogene (3q26) leads to aggressive forms of human acute myeloid leukemia (AML). However, the mechanism of EVI1-mediated leukemogenesis has not been fully elucidated. Previously, by characterizing the EVI1 promoter, we have shown that RUNX1 and ELK1 directly regulate EVI1 transcription. Intriguingly, bioinformatic analysis of the EVI1 promoter region identified the presence of several EVI1 potential binding sites. Thus, we hypothesized that EVI1 could bind to these sites regulating its own transcription. In this study, we show that there is a functional interaction between EVI1 and its promoter, and that the different EVI1 isoforms (EVI1-145kDa, EVI1-Δ324 and MDS1-EVI1) regulate the transcription of EVI1 transcripts through distinct promoter regions. Moreover, we determine that the EVI1-145kDa isoform activates EVI1 transcription, whereas EVI1-Δ324 and MDS1-EVI1 act as repressors. Finally, we demonstrate that these EVI1 isoforms are involved in cell transformation; functional experiments show that EVI1-145kDa prolongs the maintenance of hematopoietic stem and progenitor cells; conversely, MDS1-EVI1 repressed hematopoietic stem and progenitor colony replating capacity. We demonstrate for the first time that EVI1 acts as a regulator of its own expression, highlighting the complex regulation of EVI1, and open new directions to better understand the mechanisms of EVI1 overexpressing leukemias.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Leucemia/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Proteínas de Unión al ADN/genética , Células Madre Hematopoyéticas/patología , Humanos , Leucemia/genética , Leucemia/patología , Proteína del Locus del Complejo MDS1 y EV11 , Ratones , Proto-Oncogenes/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA