Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 856(Pt 2): 159041, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174703

RESUMEN

Microplastics have appeared as emerging pollutants due to the diverse applications of plastics in today's world. Growing evidence points to the negative impacts that airborne microplastics have on human health, as they can enter the human body through respiration. Our aim was to quantify polystyrene airborne microplastics in smaller fractions, thoracic (PM10) and alveolar (PM2.5), as they have scarcely been studied. In this work, we proposed a methodology based on thermogravimetric analysis coupled with mass spectrometry that requires minimal sample preparation and does not limit particle size. We applied this methodology to quantify the airborne polystyrene in PM10 and PM2.5 fractions in mass units of microplastics per m3 of air in an urban and agricultural region during the summer of 2021. The mean concentrations of polystyrene found in the PM10 and PM2.5 fractions were 2.09 and 1.81 ng m-3, respectively. Therefore, the majority of airborne polystyrene microplastics are found in the alveolar fraction which, is associated with severe cardiopulmonary and respiratory diseases. According to air mass backward trajectories, it was noted that the main sources of these emerging pollutants could be related to local agricultural practices.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/análisis , Microplásticos , Poliestirenos/análisis , Plásticos/análisis , Monitoreo del Ambiente/métodos , Termogravimetría , Tamaño de la Partícula , Espectrometría de Masas , Material Particulado/análisis
2.
Sci Total Environ ; 900: 165799, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37499822

RESUMEN

In Central Europe the most common allergies are provoked by grass or birch pollen allergens. We determined the intra-daily behavior of airborne pollen grains of grasses (Poaceae) and birch (Betula ssp.) in Central Europe, based on data obtained from a network of automatic pollen monitors over Europe (www.pollenscience.eu). Our aim was to determine the time of day when the lowest concentrations occur, to provide allergic individuals the optimal time to ventilate their homes. The study was carried out in three Central European capitals, Berlin (Germany), Paris-Saclay (France), and Luxembourg (Luxembourg), as well as in eight stations in Germany (Altötting, Feucht, Garmisch-Partenkirchen, Hof, Marktheidenfeld, Mindelheim, Munich and Viechtach). The diurnal rhythm of these eleven locations was analyzed for either the complete, first week, peak week, peak day and last week of the pollen season. The data studied were reported as pollen/m3 measured in 3 h periods. Stations were classified as city, semi-populated or countryside areas using land-use and population density criteria. Grass pollen has a more pronounced diurnal rhythm than birch pollen concentrations. A significant difference was observed when comparing day (6-21 h) versus night (21-6 h) for all stations. No difference was detected between city and countryside for both pollen types, although for Poaceae a longer period of maximum concentrations was observed in big cities and higher day/night-time differences were registered in the countryside (6.4) than in cities (3.0). The highest pollen concentrations were observed between 9 and 18 h for grass, but the rhythm was less pronounced for birch pollen. For allergic individuals who want to bring in fresh air in their homes, we recommend opening windows after 21 h, but even better early in the morning between 6 and 9 h before pollinations (re)starts.


Asunto(s)
Hipersensibilidad , Poaceae , Humanos , Betula , Polen , Alérgenos , Europa (Continente) , Estaciones del Año
3.
Environ Pollut ; 266(Pt 3): 115279, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32805680

RESUMEN

Air quality management is underpinned by continuous measurements of concentrations of target air pollutants in monitoring stations. Although many approaches for optimizing the number and location of air quality monitoring stations are described in the literature, these are usually focused on dense networks. However, there are small and medium-size urban areas that only require one monitoring station but also suffer from severe air pollution. Given that target pollutants are usually measured at the same sampling points; it is necessary to develop a methodology to determine the optimal location of the single station. In this paper, such a methodology is proposed based on maximizing an objective function, that balances between different pollutants measured in the network. The methodology is applied to a set of data available for the city of Cartagena, in southeast Spain. A sensitivity analysis reveals that 2 small areas of the studied city account for 80% of the optimal potential locations, which makes them ideal candidates for setting up the monitoring station. The methodology is easy to implement, robust and supports the decision-making process regarding the siting of fixed sampling sites.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA