Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Neurosci ; 45: 447-469, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35440143

RESUMEN

Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types.


Asunto(s)
Dependovirus , Vectores Genéticos , Encéfalo , Cápside/metabolismo , Dependovirus/genética , Técnicas de Transferencia de Gen
2.
Nat Biotechnol ; 41(9): 1272-1286, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36702899

RESUMEN

A barrier to advancing engineered adeno-associated viral vectors (AAVs) for precision access to cell subtypes is a lack of high-throughput, high-resolution assays to characterize in vivo transduction profiles. In this study, we developed an ultrasensitive, sequential fluorescence in situ hybridization (USeqFISH) method for spatial transcriptomic profiling of endogenous and viral RNA with a short barcode in intact tissue volumes by integrating hydrogel-based tissue clearing, enhanced signal amplification and multiplexing using sequential labeling. Using USeqFISH, we investigated the transduction and cell subtype tropisms across mouse brain regions of six systemic AAVs, including AAV-PHP.AX, a new variant that transduces robustly and efficiently across neurons and astrocytes. Here we reveal distinct cell subtype biases of each AAV variant, including a bias of AAV-PHP.N toward excitatory neurons. USeqFISH also enables profiling of pooled regulatory cargos, as we show for a 13-variant pool of microRNA target sites in AAV genomes. Lastly, we demonstrate potential applications of USeqFISH for in situ AAV profiling and multimodal single-cell analysis in non-human primates.


Asunto(s)
Técnicas de Transferencia de Gen , Transcriptoma , Ratones , Animales , Transducción Genética , Hibridación Fluorescente in Situ , Transcriptoma/genética , Vectores Genéticos/genética , Tropismo/genética , Dependovirus/genética , Tropismo Viral/genética
3.
bioRxiv ; 2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38187707

RESUMEN

Integrating cell type-specific regulatory elements (e.g. enhancers) with recombinant adeno-associated viruses (AAVs) can provide broad and efficient genetic access to specific cell types. However, the packaging capacity of AAVs restricts the size of both the enhancers and the cargo that can be delivered. Transcriptional crosstalk offers a novel paradigm for cell type-specific expression of large cargo, by separating distally-acting regulatory elements into a second AAV genome. Here, we identify and profile transcriptional crosstalk in AAV genomes carrying 11 different enhancers active in mouse brain. To understand transcriptional crosstalk, we develop spatial genomics methods to identify and localize AAV genomes and their concatemeric forms in cultured cells and in tissue. Using these methods, we construct detailed views of the dynamics of AAV transduction and demonstrate that transcriptional crosstalk is dependent upon concatemer formation. Finally, we leverage transcriptional crosstalk to drive expression of a large Cas9 cargo in a cell type-specific manner with systemically-administered engineered AAVs and demonstrate AAV-delivered, minimally-invasive, cell type-specific gene editing in wildtype animals that recapitulates known disease phenotypes.

4.
Neuroscience ; 449: 134-146, 2020 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-32916196

RESUMEN

Alterations in the functional organization of motor cortex and interictal motor deficits are observed in people with epilepsy. While seizures in the rat lead to more cortical area devoted to simple cortical forelimb movement representations (motor maps) assessed using short-duration intracortical microstimulation (ICMS), the effect of seizures on complex movements derived with long-duration ICMS is unknown. Further, the relationship between motor map expression and motor impairment is not well understood. We used long-duration ICMS in the rat to test the hypothesis that repeated seizure activity (cortical kindling) increases the extent of overlapping cortical representation where multiple forelimb movements are evoked to stimulation. Cortical kindling (n = 7) significantly expanded (100%) forelimb motor maps characterized by a proportional increase in both complex and simple movement representation areas, and significantly increased (285%) overlapping forelimb representation compared to sham-kindled controls (n = 5). In a second experiment, motor maps were derived with long-duration ICMS under acute cortical application of bicuculline (n = 6) to reduce intracortical inhibition or saline control (n = 10). Bicuculline also significantly expanded forelimb motor maps (108%) but without increasing representational overlap. Moreover, expanded map areas in bicuculline rats evoked qualitatively distinct forelimb movements to long-duration, but not short-duration (n = 5), ICMS that were truncated. Our evidence indicates that motor map expansion following repeated experimental seizures is associated with reduced segregation between cortical movement representations that is not entirely due to reduced cortical inhibition but may contribute to interictal motor deficits in some individuals with epilepsy.


Asunto(s)
Mapeo Encefálico , Corteza Motora , Animales , Estimulación Eléctrica , Miembro Anterior , Movimiento , Ratas , Ratas Long-Evans , Convulsiones
5.
Neuron ; 103(4): 686-701.e8, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31248729

RESUMEN

The role of serotonin (5-HT) in sleep is controversial: early studies suggested a sleep-promoting role, but eventually the paradigm shifted toward a wake-promoting function for the serotonergic raphe. Here, we provide evidence from zebrafish and mice that the raphe are critical for the initiation and maintenance of sleep. In zebrafish, genetic ablation of 5-HT production by the raphe reduces sleep, sleep depth, and the homeostatic response to sleep deprivation. Pharmacological inhibition or ablation of the raphe reduces sleep, while optogenetic stimulation increases sleep. Similarly, in mice, ablation of the raphe increases wakefulness and impairs the homeostatic response to sleep deprivation, whereas tonic optogenetic stimulation at a rate similar to baseline activity induces sleep. Interestingly, burst optogenetic stimulation induces wakefulness in accordance with previously described burst activity of the raphe during arousing stimuli. These results indicate that the serotonergic system promotes sleep in both diurnal zebrafish and nocturnal rodents. VIDEO ABSTRACT.


Asunto(s)
Ratones/fisiología , Núcleos del Rafe/fisiología , Serotonina/fisiología , Sueño/fisiología , Pez Cebra/fisiología , Animales , Nivel de Alerta/genética , Nivel de Alerta/fisiología , Buspirona/farmacología , Ritmo Circadiano/fisiología , Fenclonina/farmacología , Homeostasis , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Quipazina/farmacología , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/fisiología , Serotonina/biosíntesis , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Privación de Sueño/genética , Privación de Sueño/fisiopatología , Triptófano Hidroxilasa/deficiencia , Triptófano Hidroxilasa/genética , Vigilia/genética , Vigilia/fisiología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
6.
Elife ; 82019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31545171

RESUMEN

Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder whose neurodevelopmental symptoms include impaired executive function, attention, and spatial learning and could be due to perturbed mesolimbic dopaminergic circuitry. However, these circuits have never been directly assayed in vivo. We employed the genetically encoded optical dopamine sensor dLight1 to monitor dopaminergic neurotransmission in the ventral striatum of NF1 mice during motivated behavior. Additionally, we developed novel systemic AAV vectors to facilitate morphological reconstruction of dopaminergic populations in cleared tissue. We found that NF1 mice exhibit reduced spontaneous dopaminergic neurotransmission that was associated with excitation/inhibition imbalance in the ventral tegmental area and abnormal neuronal morphology. NF1 mice also had more robust dopaminergic and behavioral responses to salient visual stimuli, which were independent of learning, and rescued by optogenetic inhibition of non-dopaminergic neurons in the VTA. Overall, these studies provide a first in vivo characterization of dopaminergic circuit function in the context of NF1 and reveal novel pathophysiological mechanisms.


Asunto(s)
Neuronas Dopaminérgicas/patología , Red Nerviosa/patología , Neurofibromatosis 1/patología , Transmisión Sináptica , Estriado Ventral/patología , Animales , Modelos Animales de Enfermedad , Ratones , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA