Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 130, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711033

RESUMEN

BACKGROUND: Cyclic ß-1,2-glucans (CßG) are bacterial cyclic homopolysaccharides with interesting biotechnological applications. These ring-shaped molecules have a hydrophilic surface that confers high solubility and a hydrophobic cavity able to include poorly soluble molecules. Several studies demonstrate that CßG and many derivatives can be applied in drug solubilization and stabilization, enantiomer separation, catalysis, synthesis of nanomaterials and even as immunomodulators, suggesting these molecules have great potential for their industrial and commercial exploitation. Nowadays, there is no method to produce CßG by chemical synthesis and bacteria that synthesize them are slow-growing or even pathogenic, which makes the scaling up of the process difficult and expensive. Therefore, scalable production and purification methods are needed to afford the demand and expand the repertoire of applications of CßG. RESULTS: We present the production of CßG in specially designed E. coli strains by means of the deletion of intrinsic polysaccharide biosynthetic genes and the heterologous expression of enzymes involved in CßG synthesis, transport and succinilation. These strains produce different types of CßG: unsubstituted CßG, anionic CßG and CßG of high size. Unsubstituted CßG with a degree of polymerization of 17 to 24 glucoses were produced and secreted to the culture medium by one of the strains. Through high cell density culture (HCDC) of that strain we were able to produce 4,5 g of pure unsubstituted CßG /L in culture medium within 48 h culture. CONCLUSIONS: We have developed a new recombinant bacterial system for the synthesis of cyclic ß-1,2-glucans, expanding the use of bacteria as a platform for the production of new polysaccharides with biotechnological applications. This new approach allowed us to produce CßG in E. coli with high yields and the highest volumetric productivity reported to date. We expect this new highly scalable system facilitates CßG availability for further research and the widespread use of these promising molecules across many application fields.


Asunto(s)
Escherichia coli , beta-Glucanos , Escherichia coli/metabolismo , Escherichia coli/genética , beta-Glucanos/metabolismo
2.
Appl Microbiol Biotechnol ; 106(13-16): 5035-5049, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35799069

RESUMEN

Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp. B6 when grown on wheat bran. To explore their potential for bioprocessing, the recombinant enzymes were expressed and their activities were thoroughly characterized. rCsXyn10A is a GH10 endo-xylanase (EC 3.2.1.8), active across a broad pH range (5 to 9), at temperatures up to 55 °C. rCsAbf62A is an α-L-arabinofuranosidase (ABF) (EC 3.2.1.55) that specifically removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides (AXOS), xylan, and arabinan backbones, but it cannot act on double-substituted residues. It also has activity on pNPA. No differences were observed regarding activity when CsAbf62A was expressed with its appended CBM13 module or only the catalytic domain. The amount of xylobiose released from either wheat arabinoxylan or arabino-xylo-oligosaccharides increased significantly when rCsXyn10A was supplemented with rCsAbf62A, indicating that the removal of arabinosyl residues by rCsAbf62A improved rCsXyn10A accessibility to ß-1,4-xylose linkages, but no synergism was observed in the deconstruction of wheat bran. These results contribute to designing tailor-made, substrate-specific, enzymatic cocktails for xylan valorization. KEY POINTS: • rCsAbf62A removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides, xylan, and arabinan backbones. • The appended CBM13 of rCsAbf62A did not affect the specific activity of the enzyme. • Supplementation of rCsXyn10A with rCsAbf62A improves the degradation of AXOS and xylan.


Asunto(s)
Cellulomonas , Xilanos , Cellulomonas/genética , Cellulomonas/metabolismo , Fibras de la Dieta , Endo-1,4-beta Xilanasas/metabolismo , Glicósido Hidrolasas/metabolismo , Hidrólisis , Oligosacáridos/metabolismo , Especificidad por Sustrato , Xilanos/metabolismo
3.
J Biol Chem ; 295(42): 14430-14444, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817316

RESUMEN

S-layer (glyco)-proteins (SLPs) form a nanostructured envelope that covers the surface of different prokaryotes and show immunomodulatory activity. Previously, we have demonstrated that the S-layer glycoprotein from probiotic Lactobacillus kefiri CIDCA 8348 (SLP-8348) is recognized by Mincle (macrophage inducible C-type lectin receptor), and its adjuvanticity depends on the integrity of its glycans. However, the glycan's structure has not been described so far. Herein, we analyze the glycosylation pattern of three SLPs, SLP-8348, SLP-8321, and SLP-5818, and explore how these patterns impact their recognition by C-type lectin receptors and the immunomodulatory effect of the L. kefiri SLPs on antigen-presenting cells. High-performance anion-exchange chromatography-pulse amperometric detector performed after ß-elimination showed glucose as the major component in the O-glycans of the three SLPs; however, some differences in the length of hexose chains were observed. No N-glycosylation signals were detected in SLP-8348 and SLP-8321, but SLP-5818 was observed to have two sites carrying complex N-glycans based on a site-specific analysis and a glycomic workflow of the permethylated glycans. SLP-8348 was previously shown to enhance LPS-induced activation on both RAW264.7 macrophages and murine bone marrow-derived dendritic cells; we now show that SLP-8321 and SLP-5818 have a similar effect regardless of the differences in their glycosylation patterns. Studies performed with bone marrow-derived dendritic cells from C-type lectin receptor-deficient mice revealed that the immunostimulatory activity of SLP-8321 depends on its recognition by Mincle, whereas SLP-5818's effects are dependent on SignR3 (murine ortholog of human DC-SIGN). These findings encourage further investigation of both the potential application of these SLPs as new adjuvants and the protein glycosylation mechanisms in these bacteria.


Asunto(s)
Antígenos CD/metabolismo , Lactobacillus/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos CD/genética , Cromatografía Líquida de Alta Presión , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Glicopéptidos/análisis , Glicopéptidos/química , Glicosilación , Inmunización , Interferón gamma/metabolismo , Lectinas Tipo C/deficiencia , Lectinas Tipo C/genética , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polisacáridos/análisis , Polisacáridos/química , Células RAW 264.7 , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Appl Microbiol Biotechnol ; 104(22): 9631-9643, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32965563

RESUMEN

Woody biomass represents an important source of carbon on earth, and its global recycling is highly dependent on Agaricomycetes fungi. White-rot Basidiomycetes are a very important group in this regard, as they possess a large and diverse enzymatic repertoire for biomass decomposition. Among these enzymes, the recently discovered lytic polysaccharide monooxygenases (LPMOs) have revolutionized biomass processing with their novel oxidative mechanism of action. The strikingly high representation of LPMOs in fungal genomes raises the question of their functional versatility. In this work, we studied an AA9 LPMO from the white-rot basidiomycete Pycnoporus sanguineus, PsAA9A. Successfully produced as a recombinant secreted protein in Pichia pastoris, PsAA9A was found to be a C1-specific LPMO active on cellulosic substrates, generating native and oxidized cello-oligosaccharides in the presence of an external electron donor. PsAA9A boosted cellulolytic activity of glysoside hydrolases from families GH1, GH5, and GH6.This study serves as a starting point towards understanding the functional versatility and biotechnological potential of this enzymatic family, highly represented in wood decay fungi, in Pycnoporus genus. KEY POINTS: • PsAA9A is the first AA9 from P. sanguineus to be characterized. • PsAA9A has activity on cellulose, producing C1-oxidized cello-oligosaccharides. • Boosting activity with GH1, GH5, and GH6 was proven.


Asunto(s)
Proteínas Fúngicas , Oxigenasas de Función Mixta , Proteínas Fúngicas/genética , Humanos , Oxigenasas de Función Mixta/genética , Polyporaceae , Polisacáridos , Saccharomycetales
5.
Biochem Biophys Res Commun ; 516(3): 934-940, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31277939

RESUMEN

This study shows the effects of tamoxifen, a known estrogen receptor antagonist used in the treatment of breast cancer, on the sphingolipid pathway of Trypanosoma cruzi, searching for potential chemotherapeutic targets. A dose-dependent epimastigote growth inhibition at increasing concentration of tamoxifen was determined. In blood trypomastigotes, treatment with 10 µM showed 90% lysis, while 86% inhibition of intracellular amastigote development was obtained using 50 µM. Lipid extracts from treated and non-treated metabolically labelled epimastigotes evidenced by thin layer chromatography different levels of sphingolipids and MALDI-TOF mass spectrometry analysis assured the identity of the labelled species. Comparison by HPLC-ESI mass spectrometry of lipids, notably exhibited a dramatic increase in the level of ceramide in tamoxifen-treated parasites and a restrained increase of ceramide-1P and sphingosine, indicating that the drug is acting on the enzymes involved in the final breakdown of ceramide. The ultrastructural analysis of treated parasites revealed characteristic morphology of cells undergoing an apoptotic-like death process. Flow cytometry confirmed cell death by an apoptotic-like machinery indicating that tamoxifen triggers this process by acting on the parasitic sphingolipid pathway.


Asunto(s)
Antiprotozoarios/farmacología , Estadios del Ciclo de Vida/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Esfingolípidos/antagonistas & inhibidores , Tamoxifeno/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Ceramidas/antagonistas & inhibidores , Ceramidas/biosíntesis , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Antagonistas de Estrógenos/farmacología , Ratones , Ratones Endogámicos BALB C , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Esfingolípidos/biosíntesis , Esfingosina/antagonistas & inhibidores , Esfingosina/biosíntesis , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/metabolismo
6.
J Infect Dis ; 217(8): 1257-1266, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29325043

RESUMEN

Brucellaceae are stealthy pathogens with the ability to survive and replicate in the host in the context of a strong immune response. This capacity relies on several virulence factors that are able to modulate the immune system and in their structural components that have low proinflammatory activities. Lipopolysaccharide (LPS), the main component of the outer membrane, is a central virulence factor of Brucella, and it has been well established that it induces a low inflammatory response. We describe here the identification and characterization of a novel periplasmic protein (RomA) conserved in alpha-proteobacteria, which is involved in the homeostasis of the outer membrane. A mutant in this gene showed several phenotypes, such as membrane defects, altered LPS composition, reduced adhesion, and increased virulence and inflammation. We show that RomA is involved in the synthesis of LPS, probably coordinating part of the biosynthetic complex in the periplasm. Its absence alters the normal synthesis of this macromolecule and affects the homeostasis of the outer membrane, resulting in a strain with a hyperinflammatory phenotype. Our results suggest that the proper synthesis of LPS is central to maximize virulence and minimize inflammation.


Asunto(s)
Proteínas Bacterianas/fisiología , Brucella/metabolismo , Brucelosis/microbiología , Lipopolisacáridos/biosíntesis , Animales , Brucella/patogenicidad , Gentamicinas , Inflamación/metabolismo , Ratones , Transporte de Proteínas , Virulencia
7.
Biochem Biophys Res Commun ; 497(4): 1082-1088, 2018 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-29496449

RESUMEN

Parasites of the genus Plasmodium responsible for Malaria are obligate intracellular pathogens residing in mammalian red blood cells, hepatocytes, or mosquito midgut epithelial cells. Regarding that detailed knowledge on the sphingolipid biosynthetic pathway of the apicomplexan protozoan parasites is scarce, different stages of Plasmodium falciparum were treated with tamoxifen in order to evaluate the effects of this drug on the glycosphingolipid biosynthesis. Thin layer chromatography, High performance reverse phase chromatography and UV-MALDI-TOF mass spectrometry were the tools used for the analysis. In the ring forms, the increase of NBD-phosphatidyl inositol biosynthesis was notorious but differences at NBD-GlcCer levels were undetectable. In trophozoite forms, an abrupt decrease of NBD-acylated GlcDHCer and NBD-GlcDHCer in addition to an increase of NBD-PC biosynthesis was observed. On the contrary, in schizonts, tamoxifen seems not to be producing substantial changes in lipid biosynthesis. Our findings indicate that in this parasite, tamoxifen is exerting an inhibitory action on Glucosylceramidesynthase and sphingomyelin synthase levels. Moreover, regarding that Plasmodium does not biosynthesize inositolphosphoceramides, the accumulation of phosphatidylinositol should indicate an inhibitory action on glycosylinositol phospholipid synthesis.


Asunto(s)
Vías Biosintéticas/efectos de los fármacos , Eritrocitos/parasitología , Plasmodium falciparum/efectos de los fármacos , Esfingolípidos/biosíntesis , Tamoxifeno/farmacología , Apicomplexa , Cromatografía de Fase Inversa , Eritrocitos/metabolismo , Glicoesfingolípidos/análisis , Estadios del Ciclo de Vida , Espectrometría de Masas , Fosfatidilinositoles/análisis , Infecciones por Protozoos , Esfingolípidos/análisis
8.
Med Microbiol Immunol ; 207(2): 117-128, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29274017

RESUMEN

In this work, the presence of sulfated N-glycans was studied in a high-mannose-type glycoprotein of Trypanosoma cruzi with serinecarboxipeptidase (TcSCP) activity. The immune cross-reactivity between purified SCP and Cruzipain (Cz) was evidenced using rabbit sera specific for both glycoproteins. Taking advantage that SCP co-purifies with Cz from Concanavalin-A affinity columns, the Cz-SCP mixture was desulfated, ascribing the cross-reactivity to the presence of sulfate groups in both molecules. Therefore, knowing that Cz is a sulfated glycoprotein, with antigenic sulfated epitopes (sulfotopes), SCP was excised from SDS-PAGE and the N-glycosydic chains were analyzed by UV-MALDI-TOF-MS, confirming the presence of short-sulfated high-mannose-type oligosaccharidic chains. Besides, the presence of sulfotopes was analyzed in lysates of the different parasite stages demonstrating that a band with apparent molecular weight similar to SCP was highly recognized in trypomastigotes. In addition, SCP was confronted with sera of infected people with different degrees of cardiac dysfunction. Although most sera recognized it in different groups, no statistical association was found between sera antibodies specific for SCP and the severity of the disease. In summary, our findings demonstrate (1) the presence of sulfate groups in the N-glycosidic short chains of native TcSCP, (2) the existence of immune cross-reactivity between Cz and SCP, purified from epimastigotes, (3) the presence of common sulfotopes between both parasite glycoproteins, and (4) the enhanced presence of sulfotopes in trypomastigotes, probably involved in parasite-host relationship and/or infection. Interestingly, we show for the first time that SCP is a minor antigen recognized by most of chronic Chagas disease patient's sera.


Asunto(s)
Antígenos de Protozoos/inmunología , Carboxipeptidasas/inmunología , Enfermedad de Chagas/inmunología , Glicoproteínas/inmunología , Trypanosoma cruzi/inmunología , Animales , Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Carboxipeptidasas/química , Carboxipeptidasas/metabolismo , Reacciones Cruzadas , Cisteína Endopeptidasas/inmunología , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Espectrometría de Masas , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias , Conejos , Sulfatos/análisis , Trypanosoma cruzi/enzimología
9.
Bioorg Med Chem Lett ; 27(3): 432-436, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28040392

RESUMEN

Bordetella bronchiseptica produces respiratory disease primarily in mammals including humans. Although a considerably amount of research has been generated regarding lipopolysaccharide (LPS) role during infection and stimulating innate and adaptive immune response, mechanisms involved in LPS synthesis are still unknown. In this context we searched in B. bronchiseptica genome for putative glycosyltransferases. We found possible genes codifying for enzymes involved in sugar substitution of the LPS structure. We decided to analyse BB3394 to BB3400 genes, closed to a previously described LPS biosynthetic locus in B. pertussis. Particularly, conservation of BB3394 in sequenced B. bronchiseptica genomes suggests the importance of this gene for bacteria normal physiology. Deletion of BB3394 abolished resistance to naive serum as described for other LPS mutants. When purified LPS was analyzed, differences in the LPS core structure were found. Particularly, a GalNA branched sugar substitution in the core was absent in the LPS obtained from BB3394 deletion mutant. Absence of GalNA in core LPS alters immune response in vivo but is able to induce protective response against B. bronchiseptica infection.


Asunto(s)
Bordetella bronchiseptica/metabolismo , Lipopolisacáridos/biosíntesis , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/inmunología , Genes Bacterianos , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Sistema Inmunológico/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/inmunología , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Curr Microbiol ; 73(6): 904-914, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27664015

RESUMEN

Type IV pili (Tfp) are widely distributed adhesins of bacterial surfaces. In plant pathogenic bacteria, Tfp are involved in host colonization and pathogenesis. Xanthomonas citri subsp. citri (Xcc) is the phytopathogen responsible for citrus canker disease. In this work, three Tfp structural genes, fimA, fimA1, and pilA from Xcc were studied. A pilA mutant strain from Xcc (XccΔpilA) was constructed and differences in physiological features, such as motilities, adhesion, and biofilm formation, were observed. A structural study of the purified Tfp fractions from Xcc wild-type and Xcc∆pilA showed that pilins are glycosylated in both strains and that FimA and FimA1 are the main structural components of the pili. Furthermore, smaller lesion symptoms and reduced bacterial growth were produced by Xcc∆pilA in orange plants compared to the wild-type strain. These results indicate that the minor pilin-like gene, pilA, is involved in Tfp performance during the infection process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrus/microbiología , Proteínas Fimbrias/metabolismo , Enfermedades de las Plantas/microbiología , Xanthomonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Fimbrias/genética , Eliminación de Gen , Virulencia , Xanthomonas/genética , Xanthomonas/patogenicidad
11.
J Biol Chem ; 289(16): 11304-11317, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24596091

RESUMEN

Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family.


Asunto(s)
Endopeptidasas/metabolismo , Haloferax volcanii/metabolismo , Glicoproteínas de Membrana/metabolismo , Oligosacáridos/metabolismo , Endopeptidasas/genética , Técnicas de Silenciamiento del Gen , Glicosilación , Haloferax volcanii/genética , Glicoproteínas de Membrana/genética , Oligosacáridos/genética
12.
Eukaryot Cell ; 13(2): 320-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24376001

RESUMEN

Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate synthase of Trypanosoma brucei (TbSPPS), has a central role in reoxidation of reducing equivalents in the mitochondrion of T. brucei. The ablation of TbSPPS gene expression by RNA interference increased the generation of reactive oxygen species and reduced cell growth and oxygen consumption. The addition of glycerol to the culture medium exacerbated the phenotype by blocking its endogenous generation and excretion. The participation of TbSPPS in UQ synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the downregulation of TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the cells. The findings that both UQ9 and ATP pools were severely depleted by the drug and that exogenous UQ10 was able to fully rescue growth of the inhibited parasites strongly suggest that TbSPPS and UQ synthesis are the main targets of the drug. These two strategies highlight the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug target.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Estadios del Ciclo de Vida , Nitrilos/farmacología , Proteínas Protozoarias/metabolismo , Piridinas/farmacología , Trypanosoma brucei brucei/enzimología , Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/genética , Animales , Doxiciclina/uso terapéutico , Inhibidores Enzimáticos/farmacología , Glicerol/uso terapéutico , Indoles , Maleimidas , Ratones , Nitrilos/farmacocinética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Piridinas/farmacocinética , Especies Reactivas de Oxígeno/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/patogenicidad , Tripanosomiasis/tratamiento farmacológico , Ubiquinona/biosíntesis
13.
Front Cell Infect Microbiol ; 13: 1028496, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256110

RESUMEN

American Trypanosomiasis or Chagas disease (ChD), a major problem that is still endemic in large areas of Latin America, is caused by Trypanosoma cruzi. This agent holds a major antigen, cruzipain (Cz). Its C-terminal domain (C-T) is retained in the glycoprotein mature form and bears several post-translational modifications. Glycoproteins containing sulfated N-linked oligosaccharides have been mostly implicated in numerous specific procedures of molecular recognition. The presence of sulfated oligosaccharides was demonstrated in Cz, also in a minor abundant antigen with serine-carboxypeptidase (SCP) activity, as well as in parasite sulfatides. Sulfate-bearing glycoproteins in Trypanosomatids are targets of specific immune responses. T. cruzi chronically infected subjects mount specific humoral immune responses to sulfated Cz. Unexpectedly, in the absence of infection, mice immunized with C-T, but not with sulfate-depleted C-T, showed ultrastructural heart anomalous pathological effects. Moreover, the synthetic anionic sugar conjugate GlcNAc6SO3-BSA showed to mimic the N-glycan-linked sulfated epitope (sulfotope) humoral responses that natural Cz elicits. Furthermore, it has been reported that sulfotopes participate via the binding of sialic acid Ig-like-specific lectins (Siglecs) to sulfosialylated glycoproteins in the immunomodulation by host-parasite interaction as well as in the parasite infection process. Strikingly, recent evidence involved Cz-sulfotope-specific antibodies in the immunopathogenesis and infection processes during the experimental ChD. Remarkably, sera from chronically T. cruzi-infected individuals with mild disease displayed higher levels of IgG2 antibodies specific for sulfated glycoproteins and sulfatides than those with more severe forms of the disease, evidencing that T. cruzi sulfotopes are antigenic independently of the sulfated glycoconjugate type. Ongoing assays indicate that antibodies specific for sulfotopes might be considered biomarkers of human cardiac ChD progression, playing a role as predictors of stability from the early mild stages of chronic ChD.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Animales , Ratones , Trypanosoma cruzi/metabolismo , Sulfatos/metabolismo , Sulfoglicoesfingolípidos , Enfermedad de Chagas/parasitología , Glicoconjugados , Proteínas Protozoarias , Glicoproteínas/metabolismo , Oligosacáridos
14.
J Biol Chem ; 286(29): 25628-43, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21596742

RESUMEN

Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, provoking defoliation and premature fruit drop with concomitant economical damage. In plant pathogenic bacteria, lipopolysaccharides are important virulence factors, and they are being increasingly recognized as major pathogen-associated molecular patterns for plants. In general, three domains are recognized in a lipopolysaccharide: the hydrophobic lipid A, the hydrophilic O-antigen polysaccharide, and the core oligosaccharide, connecting lipid A and O-antigen. In this work, we have determined the structure of purified lipopolysaccharides obtained from Xanthomonas axonopodis pv. citri wild type and a mutant of the O-antigen ABC transporter encoded by the wzt gene. High pH anion exchange chromatography and matrix-assisted laser desorption/ionization mass spectrum analysis were performed, enabling determination of the structure not only of the released oligosaccharides and lipid A moieties but also the intact lipopolysaccharides. The results demonstrate that Xac wild type and Xacwzt LPSs are composed mainly of a penta- or tetra-acylated diglucosamine backbone attached to either two pyrophosphorylethanolamine groups or to one pyrophosphorylethanolamine group and one phosphorylethanolamine group. The core region consists of a branched oligosaccharide formed by Kdo2Hex6GalA3Fuc3NAcRha4 and two phosphate groups. As expected, the presence of a rhamnose homo-oligosaccharide as O-antigen was determined only in the Xac wild type lipopolysaccharide. In addition, we have examined how lipopolysaccharides from Xac function in the pathogenesis process. We analyzed the response of the different lipopolysaccharides during the stomata aperture closure cycle, the callose deposition, the expression of defense-related genes, and reactive oxygen species production in citrus leaves, suggesting a functional role of the O-antigen from Xac lipopolysaccharides in the basal response.


Asunto(s)
Citrus sinensis/inmunología , Citrus sinensis/microbiología , Inmunidad Innata , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Xanthomonas axonopodis/fisiología , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Carbohidratos , Citrus sinensis/anatomía & histología , Citrus sinensis/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata/genética , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/aislamiento & purificación , Datos de Secuencia Molecular , Peróxidos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Estomas de Plantas/anatomía & histología , Estomas de Plantas/inmunología , Estomas de Plantas/microbiología , Xanthomonas axonopodis/metabolismo
15.
Rapid Commun Mass Spectrom ; 26(17): 2011-20, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22847700

RESUMEN

RATIONALE: In developing countries, Shigella flexneri (Sf) is the major causative agent of the endemic shigellosis (bacillary dysentery) responsible annually for one million fatalities mostly among infants. Lipopolysaccharides (LPSs) are characteristic components of the outer membrane of the overwhelming majority of Gram-negative bacteria. Since lipid A is essential for the viability of the Gram-negative bacteria, it is subject to extensive chemical studies with new analytical techniques. METHODS: Lipid A was released by mild acid hydrolysis from the lipopolysaccharide which was obtained via the phenol/water extraction, purified and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and matrix-assisted laser desorption/ionization laser-induced dissociation tandem mass spectrometry (MALDI-LID-MS/MS). RESULTS: A detailed structural study of the whole lipid A obtained from S. flexneri variant X was carried out for the first time. Thus, we have shown that lipid A is a heterogeneous mixture having different numbers of acylated and phosphoethanolamine groups attached to the diglucosamine backbone. Furthermore, we found in the phenol phase an unusual hepta-acylated lipid A species, although the abundance was very low. CONCLUSIONS: MALDI-TOF-MS allowed us to unravel the lipid A heterogeneity, which was not previously reported in Sf LPS. It is well known that slight variations of the chemical structure of lipid A may change its biological activity. Thus, the knowledge of the detailed chemical structure represents an essential step for further development of new preventive or therapeutically active compounds.


Asunto(s)
Lípido A/química , Shigella flexneri/química , Conformación Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
16.
Microbiol Immunol ; 55(12): 847-54, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22039958

RESUMEN

The present authors have previously obtained the Bordetella bronchiseptica mutant BbLP39, which contains a deep-rough lipopolysaccharide (LPS) instead the wild type smooth LPS with O antigen. This mutant was found to be altered in the expression of some proteins and in its ability to colonize mouse lungs. Particularly, in BbLP39 the expression of pertactin is decreased. To differentiate the contribution of each bacterial component to the observed phenotype, here mice defective in the LPS sensing receptor TLR4 (TLR4-defective mice) were used. In contrast to wild-type mice, infection of TLR4-defective mice with BbLP39 resulted in lung infection, which persisted for more than 10 days post-challenge. Comparative analysis of the immune responses induced by purified mutant and wild type LPSs showed that the mutant LPS induced significantly higher degrees of expression of TNF-α and IL-10 mRNA than did the wild type. UV matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry analysis revealed that both LPSs had the same penta-acylated lipid A structure. However, the lipid A from BbLP39 contained pyrophosphate instead of phosphate at position 1. This structural difference, in addition to the lack of O-antigen in BbLP39, may explain the functional differences between BbLP39 and wild type strains.


Asunto(s)
Infecciones por Bordetella/inmunología , Bordetella bronchiseptica/química , Bordetella bronchiseptica/inmunología , Lipopolisacáridos/química , Infecciones del Sistema Respiratorio/inmunología , Animales , Infecciones por Bordetella/microbiología , Bordetella bronchiseptica/genética , Citocinas/genética , Citocinas/metabolismo , Femenino , Lípido A/química , Lípido A/inmunología , Lípido A/aislamiento & purificación , Lipopolisacáridos/inmunología , Lipopolisacáridos/aislamiento & purificación , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Mutación , Antígenos O/inmunología , Infecciones del Sistema Respiratorio/microbiología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
17.
Front Cell Infect Microbiol ; 11: 814276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35059328

RESUMEN

Trypanosoma cruzi cruzipain (Cz) bears a C-terminal domain (C-T) that contains sulfated epitopes "sulfotopes" (GlcNAc6S) on its unique N-glycosylation site. The effects of in vivo exposure to GlcNAc6S on heart tissue ultrastructure, immune responses, and along the outcome of infection by T. cruzi, were evaluated in a murine experimental model, BALB/c, using three independent strategies. First, mice were pre-exposed to C-T by immunization. C-T-immunized mice (C-TIM) showed IgG2a/IgG1 <1, induced the production of cytokines from Th2, Th17, and Th1 profiles with respect to those of dC-TIM, which only induced IL-10 respect to the control mice. Surprisingly, after sublethal challenge, both C-TIM and dC-TIM showed significantly higher parasitemia and mortality than the control group. Second, mice exposed to BSA-GlcNAc6S as immunogen (BSA-GlcNAc6SIM) showed: severe ultrastructural cardiac alterations while BSA-GlcNAcIM conserved the regular tissue architecture with slight myofibril changes; a strong highly specific humoral-immune-response reproducing the IgG-isotype-profile obtained with C-TIM; and a significant memory-T-cell-response demonstrating sulfotope-immunodominance with respect to BSA-GlcNAcIM. After sublethal challenge, BSA-GlcNAc6SIM showed exacerbated parasitemias, despite elevated IFN-γ levels were registered. In both cases, the abrogation of ultrastructural alterations when using desulfated immunogens supported the direct involvement of sulfotopes and/or indirect effect through their specific antibodies, in the induction of tissue damage. Finally, a third strategy using a passive transference of sulfotope-specific antibodies (IgG-GlcNAc6S) showed the detrimental activity of IgG-GlcNAc6S on mice cardiac tissue, and mice treated with IgG-GlcNAc6S after a sublethal dose of T. cruzi, surprisingly reached higher parasitemias than control groups. These findings confirmed the indirect role of the sulfotopes, via their IgG-GlcNAc6S, both in the immunopathogenicity as well as favoring T. cruzi infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Antígenos de Protozoos , Cisteína Endopeptidasas , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias
18.
Mol Plant Microbe Interact ; 23(12): 1592-604, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20636103

RESUMEN

Exopolysaccharide (EPS) and lipopolysaccharide (LPS) from Bradyrhizobium japonicum are important for infection and nodulation of soybean (Glycine max), although their roles are not completely understood. To better understand this, we constructed mutants in B. japonicum USDA 110 impaired in galactose or galacturonic acid incorporation into the EPS without affecting the LPS. The derivative LP 3010 had a deletion of lspL-ugdH and produced EPS without galacturonic acid whereas LP 3013, with an insertion in exoB, produced EPS without galactose. In addition, the strain LP 3017, with both mutations, had EPS devoid of both galactosides. The missing galactosides were not replaced by other sugars. The defects in EPS had different consequences. LP 3010 formed biofilms and nodulated but was defective in competitiveness for nodulation; and, inside nodules, the peribacteroid membranes tended to fuse, leading to the merging of symbiosomes. Meanwhile, LP 3013 and LP 3017 were unable to form biofilms and produced empty pseudonodules but exoB suppressor mutants were obtained when LP 3013 plant inoculation was supplemented with wild-type EPS. Similar phenotypes were observed with all these mutants in G. soja. Therefore, the lack of each galactoside in the EPS has a different functional effect on the B. japonicum-soybean symbiosis.


Asunto(s)
Bradyrhizobium/fisiología , Galactosa/química , Galactosa/metabolismo , Ácidos Hexurónicos/química , Ácidos Hexurónicos/metabolismo , Polisacáridos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Bradyrhizobium/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/ultraestructura , Polisacáridos Bacterianos/química , Glycine max/microbiología , Simbiosis
19.
J Immunol ; 181(12): 8308-14, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19050247

RESUMEN

Glycosylation of the Ab molecule is essential for maintaining the functional structure of Fc region and consequently for Ab-mediated effector functions, such as binding to cells or complement system activation. Alterations in the composition of the sugar moiety can dramatically influence Ab activity; however, it is not completely clear how differences in the N-linked oligosaccharide structure impact the biological function of Abs. We have described that murine IgG1 Abs can be separated according to their ability to elicit in vivo anaphylaxis in a fraction of anaphylactic and other of non-anaphylactic molecules. Furthermore, we showed that the N-linked oligosaccharide chain is essential for the structural conformation of the anaphylactic IgG1, the binding to FcgammaRIII on mast cells, and, consequently, for the ability to mediate anaphylactic reactions. In this study, we evaluated the contribution of individual sugar residues to this biological function. Differences in the glycan composition were observed when we analyzed oligosaccharide chains from anaphylactic or non-anaphylactic IgG1, mainly the presence of more sialic acid and fucose residues in anaphylactic molecules. Interestingly, the enzymatic removal of terminal sialic acid residues in anaphylactic IgG1 resulted in loss of the ability to trigger mast cell degranulation and in vivo anaphylactic reaction, similarly to the deglycosylated IgG1 Ab. In contrast, fucose removal did not affect the anaphylactic function. Therefore, we demonstrated that the ability of murine IgG1 Abs to mediate anaphylaxis is directly dependent on the amount of sialic acid residues associated to the oligosaccharide chain attached to the Fc region of these molecules.


Asunto(s)
Anafilaxia/inmunología , Anafilaxia/metabolismo , Inmunoglobulina G/metabolismo , Ácidos Siálicos/metabolismo , Animales , Sitios de Unión de Anticuerpos , Conformación de Carbohidratos , Línea Celular , Cromatografía de Afinidad , Cromatografía por Intercambio Iónico , Ensayo de Inmunoadsorción Enzimática , Hibridomas , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/química , Lectinas/química , Lectinas/inmunología , Lectinas/metabolismo , Mastocitos/química , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , Oligosacáridos/química , Oligosacáridos/inmunología , Oligosacáridos/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/fisiología , Relación Estructura-Actividad
20.
Carbohydr Polym ; 245: 116458, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32718600

RESUMEN

Pseudomonas veronii 2E, an autochthonous bacterium isolated from sediments associated to a high-polluted watershed, produces a complex matrix of exopolymers with carbohydrates as main components. In this work, four polysaccharides were isolated from the extracellular material. The major acidic polysaccharide named EPO2, was purified and its structure was elucidated using Matrix-assisted laser desorption/ionization and Electrospray ionization mass spectrometry, Infrared spectroscopy, Nuclear magnetic resonance spectroscopy and chemical treatments. This heteropolysaccharide consists in an α(1-4) glucan substituted with N-Acetylglucosamine residues and with a branching α-D-GlcpA-(1-3)-L-Fucp disaccharide. The biosorption capacity of EPO2 and of the whole exopolysaccharide to Pb(II), Zn(II), Cu(II) and Fe(II) was evaluated. EPO2 showed a remarkable sorption capacity for Fe(II) with an efficiency of 70% and for Zn(II) 39%. When the whole exopolysaccharide fraction was tested it showed a significantly lower metal sorption ability than purified EPO2 suggesting the involvement of the distinct acidic branching disaccharide in this interaction.


Asunto(s)
Cobre/química , Hierro/química , Plomo/química , Polisacáridos Bacterianos/química , Pseudomonas/metabolismo , Zinc/química , Adsorción , Matriz Extracelular de Sustancias Poliméricas/química , Espectroscopía de Resonancia Magnética , Polisacáridos Bacterianos/aislamiento & purificación , Solubilidad , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA