Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(3): 564-576.e16, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753430

RESUMEN

Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean. We found predictive models for 426 dependencies (55%) by nonlinear regression modeling considering 66,646 molecular features. Many dependencies fall into a limited number of classes, and unexpectedly, in 82% of models, the top biomarkers were expression based. We demonstrated the basis behind one such predictive model linking hypermethylation of the UBB ubiquitin gene to a dependency on UBC. Together, these observations provide a foundation for a cancer dependency map that facilitates the prioritization of therapeutic targets.


Asunto(s)
Neoplasias/genética , Neoplasias/patología , Línea Celular Tumoral , Humanos , Interferencia de ARN , Programas Informáticos , Ubiquitina/genética
2.
Cell ; 165(2): 303-16, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058663

RESUMEN

Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.


Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/patología , Animales , Ritmo Circadiano , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
3.
Nat Immunol ; 16(5): 495-504, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25848864

RESUMEN

The molecules and pathways that fine-tune innate inflammatory responses mediated by Toll-like receptor 7 (TLR7) remain to be fully elucidated. Using an unbiased genome-scale screen with short hairpin RNA (shRNA), we identified the receptor TREML4 as an essential positive regulator of TLR7 signaling. Macrophages from Treml4(-/-) mice were hyporesponsive to TLR7 agonists and failed to produce type I interferons due to impaired phosphorylation of the transcription factor STAT1 by the mitogen-activated protein kinase p38 and decreased recruitment of the adaptor MyD88 to TLR7. TREML4 deficiency reduced the production of inflammatory cytokines and autoantibodies in MRL/lpr mice, which are prone to systemic lupus erythematosus (SLE), and inhibited the antiviral immune response to influenza virus. Our data identify TREML4 as a positive regulator of TLR7 signaling and provide insight into the molecular mechanisms that control antiviral immunity and the development of autoimmunity.


Asunto(s)
Lupus Eritematoso Sistémico/inmunología , Macrófagos/fisiología , Glicoproteínas de Membrana/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/inmunología , Receptores Inmunológicos/metabolismo , Receptor Toll-Like 7/metabolismo , Animales , Autoanticuerpos/metabolismo , Autoinmunidad/genética , Células Cultivadas , Citocinas/metabolismo , Humanos , Inmunidad Innata/genética , Mediadores de Inflamación/metabolismo , Interferón Tipo I/metabolismo , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , ARN Interferente Pequeño/genética , Receptores Inmunológicos/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Cell ; 151(7): 1457-73, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23245941

RESUMEN

Wnt/ß-catenin signaling plays a key role in the pathogenesis of colon and other cancers; emerging evidence indicates that oncogenic ß-catenin regulates several biological processes essential for cancer initiation and progression. To decipher the role of ß-catenin in transformation, we classified ß-catenin activity in 85 cancer cell lines in which we performed genome-scale loss-of-function screens and found that ß-catenin active cancers are dependent on a signaling pathway involving the transcriptional regulator YAP1. Specifically, we found that YAP1 and the transcription factor TBX5 form a complex with ß-catenin. Phosphorylation of YAP1 by the tyrosine kinase YES1 leads to localization of this complex to the promoters of antiapoptotic genes, including BCL2L1 and BIRC5. A small-molecule inhibitor of YES1 impeded the proliferation of ß-catenin-dependent cancers in both cell lines and animal models. These observations define a ß-catenin-YAP1-TBX5 complex essential to the transformation and survival of ß-catenin-driven cancers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transformación Celular Neoplásica , Neoplasias del Colon/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Dominio T Box/metabolismo , beta Catenina/metabolismo , Animales , Línea Celular Tumoral , Colon/embriología , Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-yes/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-yes/metabolismo , Survivin , Factores de Transcripción , Transcripción Genética , Proteínas Señalizadoras YAP , Pez Cebra/embriología , Proteína bcl-X/genética , Familia-src Quinasas/antagonistas & inhibidores
5.
Cell ; 150(4): 842-54, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901813

RESUMEN

Due to genome instability, most cancers exhibit loss of regions containing tumor suppressor genes and collateral loss of other genes. To identify cancer-specific vulnerabilities that are the result of copy number losses, we performed integrated analyses of genome-wide copy number and RNAi profiles and identified 56 genes for which gene suppression specifically inhibited the proliferation of cells harboring partial copy number loss of that gene. These CYCLOPS (copy number alterations yielding cancer liabilities owing to partial loss) genes are enriched for spliceosome, proteasome, and ribosome components. One CYCLOPS gene, PSMC2, encodes an essential member of the 19S proteasome. Normal cells express excess PSMC2, which resides in a complex with PSMC1, PSMD2, and PSMD5 and acts as a reservoir protecting cells from PSMC2 suppression. Cells harboring partial PSMC2 copy number loss lack this complex and die after PSMC2 suppression. These observations define a distinct class of cancer-specific liabilities resulting from genome instability.


Asunto(s)
Genes Esenciales , Inestabilidad Genómica , Neoplasias/genética , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Línea Celular Tumoral , Deleción Cromosómica , Dosificación de Gen , Genes Supresores de Tumor , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Trasplante Heterólogo
6.
Blood ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905635

RESUMEN

The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) AML cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent anti-proliferative activity across several AML and ALL cell lines and patient samples harboring KMT2A- or NPM1-alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent anti-proliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A co-crystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory (R/R) acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).

7.
Blood ; 132(12): 1293-1303, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30042095

RESUMEN

Lenalidomide mediates the ubiquitination and degradation of Ikaros family zinc finger protein 1 (IKZF1), IKZF3, and casein kinase 1α (CK1α) by facilitating their interaction with cereblon (CRBN), the substrate receptor for the CRL4CRBN E3 ubiquitin ligase. Through this mechanism, lenalidomide is a clinically effective treatment of multiple myeloma and myelodysplastic syndrome (MDS) with deletion of chromosome 5q [del(5q) MDS]. To identify the cellular machinery required for lenalidomide-induced CRL4CRBN activity, we performed a positive selection, genome-scale clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) screen in a lenalidomide-sensitive myeloma cell line. CRBN was the top-ranking gene, with all CRBN-targeting guide RNAs (gRNAs) ranking as the 6 highest-scoring gRNAs. A counterscreen using an IKZF3 degron reporter to assay lenalidomide-induced protein degradation highlighted regulators of cullin-RING ligase neddylation and 2 E2 ubiquitin-conjugating enzymes as necessary for efficient lenalidomide-induced protein degradation. We demonstrated that loss of UBE2M or members of the constitutive photomorphogenesis 9 (COP9) signalosome results in altered neddylation of cullin 4A and impairs lenalidomide-dependent CRL4CRBN activity. Additionally, we established that UBE2D3 and UBE2G1 play distinct roles in substrate ubiquitination by CRL4CRBN, with UBE2D3 acting to prime targets via monoubiquitination and UBE2G1 functioning to extend polyubiquitin chains with lysine 48 linkages. The validation of UBE2D3 and UBE2G1 highlights the functional capacity of CRISPR-Cas9 screening to identify E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase complex pairings. More broadly, these findings establish key proteins required for lenalidomide-dependent CRL4CRBN function in myeloma and inform potential mechanisms of drug resistance.


Asunto(s)
Antineoplásicos/farmacología , Lenalidomida/farmacología , Mieloma Múltiple/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos
8.
Nature ; 506(7486): 52-7, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24476824

RESUMEN

Recent clinical trials showed that targeting of inhibitory receptors on T cells induces durable responses in a subset of cancer patients, despite advanced disease. However, the regulatory switches controlling T-cell function in immunosuppressive tumours are not well understood. Here we show that such inhibitory mechanisms can be systematically discovered in the tumour microenvironment. We devised an in vivo pooled short hairpin RNA (shRNA) screen in which shRNAs targeting negative regulators became highly enriched in murine tumours by releasing a block on T-cell proliferation upon tumour antigen recognition. Such shRNAs were identified by deep sequencing of the shRNA cassette from T cells infiltrating tumour or control tissues. One of the target genes was Ppp2r2d, a regulatory subunit of the PP2A phosphatase family. In tumours, Ppp2r2d knockdown inhibited T-cell apoptosis and enhanced T-cell proliferation as well as cytokine production. Key regulators of immune function can therefore be discovered in relevant tissue microenvironments.


Asunto(s)
Inmunoterapia , Terapia Molecular Dirigida , Proteína Fosfatasa 2/metabolismo , Microambiente Tumoral/inmunología , Animales , Antígenos de Neoplasias/inmunología , Apoptosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Proteína Fosfatasa 2/deficiencia , Proteína Fosfatasa 2/genética , ARN Interferente Pequeño/genética , Reproducibilidad de los Resultados
9.
Proc Natl Acad Sci U S A ; 114(17): E3434-E3443, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28396387

RESUMEN

Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH). To understand the relationship between oncogenic PIK3CA and OGDH function, we interrogated metabolic requirements and found an increased reliance on glucose metabolism to sustain PIK3CA mutant cell proliferation. Functional metabolic studies revealed that OGDH suppression increased levels of the metabolite 2-oxoglutarate (2OG). We found that this increase in 2OG levels, either by OGDH suppression or exogenous 2OG treatment, resulted in aspartate depletion that was specifically manifested as auxotrophy within PIK3CA mutant cells. Reduced levels of aspartate deregulated the malate-aspartate shuttle, which is important for cytoplasmic NAD+ regeneration that sustains rapid glucose breakdown through glycolysis. Consequently, because PIK3CA mutant cells exhibit a profound reliance on glucose metabolism, malate-aspartate shuttle deregulation leads to a specific proliferative block due to the inability to maintain NAD+/NADH homeostasis. Together these observations define a precise metabolic vulnerability imposed by a recurrently mutated oncogene.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Complejo Cetoglutarato Deshidrogenasa , Mutación , Proteínas de Neoplasias , Neoplasias , Animales , Línea Celular Tumoral , Ciclo del Ácido Cítrico/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Glucólisis/genética , Humanos , Complejo Cetoglutarato Deshidrogenasa/biosíntesis , Complejo Cetoglutarato Deshidrogenasa/genética , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología
10.
Proc Natl Acad Sci U S A ; 114(51): E10981-E10990, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29203668

RESUMEN

Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Interferón Tipo I/metabolismo , Neoplasias Ováricas/etiología , Neoplasias Ováricas/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos Inmunológicos , Azacitidina/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Proc Natl Acad Sci U S A ; 112(1): 268-72, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25535386

RESUMEN

Huntington's disease, the most common inherited neurodegenerative disease, is characterized by a dramatic loss of deep-layer cortical and striatal neurons, as well as morbidity in midlife. Human genetic studies led to the identification of the causative gene, huntingtin. Recent genomic advances have also led to the identification of hundreds of potential interacting partners for huntingtin protein and many hypotheses as to the molecular mechanisms whereby mutant huntingtin leads to cellular dysfunction and death. However, the multitude of possible interacting partners and cellular pathways affected by mutant huntingtin has complicated efforts to understand the etiology of this disease, and to date no curative therapeutic exists. To address the general problem of identifying the disease-phenotype contributing genes from a large number of correlative studies, here we develop a synthetic lethal screening methodology for the mammalian central nervous system, called SLIC, for synthetic lethal in the central nervous system. Applying SLIC to the study of Huntington's disease, we identify the age-regulated glutathione peroxidase 6 (Gpx6) gene as a modulator of mutant huntingtin toxicity and show that overexpression of Gpx6 can dramatically alleviate both behavioral and molecular phenotypes associated with a mouse model of Huntington's disease. SLIC can, in principle, be used in the study of any neurodegenerative disease for which a mouse model exists, promising to reveal modulators of neurodegenerative disease in an unbiased fashion, akin to screens in simpler model organisms.


Asunto(s)
Sistema Nervioso Central/enzimología , Sistema Nervioso Central/patología , Glutatión Peroxidasa/metabolismo , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/patología , Animales , Conducta Animal , Sistema Nervioso Central/fisiopatología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Ratones , Actividad Motora , Neostriado/metabolismo , Neostriado/patología , Neostriado/fisiopatología
12.
Proc Natl Acad Sci U S A ; 112(2): 512-7, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548173

RESUMEN

The differentiation of effector CD8(+) T cells is critical for the development of protective responses to pathogens and for effective vaccines. In the first few hours after activation, naive CD8(+) T cells initiate a transcriptional program that leads to the formation of effector and memory T cells, but the regulation of this process is poorly understood. Investigating the role of specific transcription factors (TFs) in determining CD8(+) effector T-cell fate by gene knockdown with RNAi is challenging because naive T cells are refractory to transduction with viral vectors without extensive ex vivo stimulation, which obscures the earliest events in effector differentiation. To overcome this obstacle, we developed a novel strategy to test the function of genes in naive CD8(+) T cells in vivo by creating bone marrow chimera from hematopoietic progenitors transduced with an inducible shRNA construct. Following hematopoietic reconstitution, this approach allowed inducible in vivo gene knockdown in any cell type that developed from this transduced progenitor pool. We demonstrated that lentivirus-transduced progenitor cells could reconstitute normal hematopoiesis and develop into naive CD8(+) T cells that were indistinguishable from wild-type naive T cells. This experimental system enabled induction of efficient gene knockdown in vivo without subsequent manipulation. We applied this strategy to show that the TF BATF is essential for initial commitment of naive CD8(+) T cells to effector development but becomes dispensable by 72h. This approach makes possible the study of gene function in vivo in unperturbed cells of hematopoietic origin that are refractory to viral transduction.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/antagonistas & inhibidores , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Interferencia de ARN , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Linfocitos T CD8-positivos/citología , Diferenciación Celular , Técnicas de Silenciamiento del Gen , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Interferente Pequeño/genética , Transducción Genética , Quimera por Trasplante
13.
Nature ; 476(7360): 346-50, 2011 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-21760589

RESUMEN

Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Genómica , Serina/biosíntesis , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Melanoma/enzimología , Melanoma/genética , Ratones , Trasplante de Neoplasias , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Interferencia de ARN
14.
Proc Natl Acad Sci U S A ; 111(51): E5564-73, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25512523

RESUMEN

Osteosarcoma is the most common primary bone tumor, yet there have been no substantial advances in treatment or survival in three decades. We examined 59 tumor/normal pairs by whole-exome, whole-genome, and RNA-sequencing. Only the TP53 gene was mutated at significant frequency across all samples. The mean nonsilent somatic mutation rate was 1.2 mutations per megabase, and there was a median of 230 somatic rearrangements per tumor. Complex chains of rearrangements and localized hypermutation were detected in almost all cases. Given the intertumor heterogeneity, the extent of genomic instability, and the difficulty in acquiring a large sample size in a rare tumor, we used several methods to identify genomic events contributing to osteosarcoma survival. Pathway analysis, a heuristic analytic algorithm, a comparative oncology approach, and an shRNA screen converged on the phosphatidylinositol 3-kinase/mammalian target of rapamycin (PI3K/mTOR) pathway as a central vulnerability for therapeutic exploitation in osteosarcoma. Osteosarcoma cell lines are responsive to pharmacologic and genetic inhibition of the PI3K/mTOR pathway both in vitro and in vivo.


Asunto(s)
Neoplasias Óseas/metabolismo , Genoma Humano , Osteosarcoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular , Heterogeneidad Genética , Mutación de Línea Germinal , Humanos , Osteosarcoma/genética , Osteosarcoma/patología , Proteína p53 Supresora de Tumor/genética
15.
PLoS Pathog ; 10(2): e1003904, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516381

RESUMEN

The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.


Asunto(s)
Proteínas de Unión al ADN/genética , Interacciones Huésped-Parásitos/genética , Orthopoxvirus , Infecciones por Poxviridae/genética , Factores de Transcripción/genética , Replicación Viral/genética , Línea Celular , Técnica del Anticuerpo Fluorescente , Factores de Transcripción del Choque Térmico , Humanos , Immunoblotting , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Proc Natl Acad Sci U S A ; 108(30): 12372-7, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21746896

RESUMEN

A comprehensive understanding of the molecular vulnerabilities of every type of cancer will provide a powerful roadmap to guide therapeutic approaches. Efforts such as The Cancer Genome Atlas Project will identify genes with aberrant copy number, sequence, or expression in various cancer types, providing a survey of the genes that may have a causal role in cancer. A complementary approach is to perform systematic loss-of-function studies to identify essential genes in particular cancer cell types. We have begun a systematic effort, termed Project Achilles, aimed at identifying genetic vulnerabilities across large numbers of cancer cell lines. Here, we report the assessment of the essentiality of 11,194 genes in 102 human cancer cell lines. We show that the integration of these functional data with information derived from surveying cancer genomes pinpoints known and previously undescribed lineage-specific dependencies across a wide spectrum of cancers. In particular, we found 54 genes that are specifically essential for the proliferation and viability of ovarian cancer cells and also amplified in primary tumors or differentially overexpressed in ovarian cancer cell lines. One such gene, PAX8, is focally amplified in 16% of high-grade serous ovarian cancers and expressed at higher levels in ovarian tumors. Suppression of PAX8 selectively induces apoptotic cell death of ovarian cancer cells. These results identify PAX8 as an ovarian lineage-specific dependency. More generally, these observations demonstrate that the integration of genome-scale functional and structural studies provides an efficient path to identify dependencies of specific cancer types on particular genes and pathways.


Asunto(s)
Neoplasias Ováricas/genética , Oxidorreductasas de Alcohol , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Oncogenes , Neoplasias Ováricas/patología , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/genética , ARN Neoplásico/genética , ARN Interferente Pequeño/genética
18.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589567

RESUMEN

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Asunto(s)
Hidrazinas , Neoplasias Renales , Triazoles , Tumor de Wilms , Humanos , Proteína Exportina 1 , Transporte Activo de Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Línea Celular Tumoral , Apoptosis , Recurrencia Local de Neoplasia , Doxorrubicina/farmacología , Tumor de Wilms/tratamiento farmacológico , Tumor de Wilms/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo
19.
Clin Cancer Res ; 29(24): 5128-5139, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37773632

RESUMEN

PURPOSE: Leiomyosarcoma (LMS) is an aggressive sarcoma for which standard chemotherapies achieve response rates under 30%. There are no effective targeted therapies against LMS. Most LMS are characterized by chromosomal instability (CIN), resulting in part from TP53 and RB1 co-inactivation and DNA damage repair defects. We sought to identify therapeutic targets that could exacerbate intrinsic CIN and DNA damage in LMS, inducing lethal genotoxicity. EXPERIMENTAL DESIGN: We performed clinical targeted sequencing in 287 LMS and genome-wide loss-of-function screens in 3 patient-derived LMS cell lines, to identify LMS-specific dependencies. We validated candidate targets by biochemical and cell-response assays in vitro and in seven mouse models. RESULTS: Clinical targeted sequencing revealed a high burden of somatic copy-number alterations (median fraction of the genome altered =0.62) and demonstrated homologous recombination deficiency signatures in 35% of LMS. Genome-wide short hairpin RNA screens demonstrated PRKDC (DNA-PKcs) and RPA2 essentiality, consistent with compensatory nonhomologous end joining (NHEJ) hyper-dependence. DNA-PK inhibitor combinations with unconventionally low-dose doxorubicin had synergistic activity in LMS in vitro models. Combination therapy with peposertib and low-dose doxorubicin (standard or liposomal formulations) inhibited growth of 5 of 7 LMS mouse models without toxicity. CONCLUSIONS: Combinations of DNA-PK inhibitors with unconventionally low, sensitizing, doxorubicin dosing showed synergistic effects in LMS in vitro and in vivo models, without discernable toxicity. These findings underscore the relevance of DNA damage repair alterations in LMS pathogenesis and identify dependence on NHEJ as a clinically actionable vulnerability in LMS.


Asunto(s)
Leiomiosarcoma , Animales , Ratones , Humanos , Leiomiosarcoma/tratamiento farmacológico , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Reparación del ADN/genética , Daño del ADN , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , ADN
20.
Commun Biol ; 5(1): 1174, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329185

RESUMEN

Aberrant DNA methylation patterns are a prominent feature of cancer. Methylation of DNA is mediated by the DNA methyltransferase (DNMT) protein family, which regulates de novo (DNMT3A and DNMT3B) and maintenance (DNMT1) methylation. Mutations in DNMT3A are observed in approximately 22% of acute myeloid leukemia (AML). We hypothesized that DNMT1 or DNMT3B could function as a synthetic lethal therapeutic strategy for DNMT3A-mutant AML. CRISPR-Cas9 tiling screens were performed to identify functional domains within DNMT1/DNMT3B that exhibited greater dependencies in DNMT3A mutant versus wild-type cell lines. Although increased sensitivity to DNMT1 mutation was observed in some DNMT3A mutant cellular models tested, the subtlety of these results prevents us from basing any conclusions on a synthetic lethal relationship between DNMT1 and DNMT3A. Our data suggests that a therapeutic window for DNMT1 methyltransferase inhibition in DNMT3A-driven AML may exist, but validation in more biologically relevant models is required.


Asunto(s)
Leucemia Mieloide Aguda , Metiltransferasas , Humanos , Metiltransferasas/genética , ADN Metiltransferasa 3A , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Leucemia Mieloide Aguda/genética , Mutación , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA