Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 19(1): 103, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167568

RESUMEN

BACKGROUND: The past few decades have seen rapid advancements in exoskeleton technology, with a considerable shift towards applications involving users with gait pathologies. Commercial devices from ReWalk, Ekso Bionics, and Indego, mainly designed for rehabilitation purposes, have inspired the development of many research platforms aimed at extending capabilities for use as safe and effective personal mobility devices. The 2016 Cybathlon featured an impressive demonstration of exoskeletons designed to enable mobility for individuals with spinal cord injury, however, not a single team completed every task and only two completed the stairs. Major improvements were showcased at the 2020 Cybathlon, with seven of the nine teams completing a similar set of tasks. Team IHMC built upon its silver-medal success from 2016 with an upgraded device, Quix. METHODS: Quix features several notable improvements including an additional powered degree of freedom for hip ab/adduction to laterally shift the device and reduce user effort while walking, custom-tailored cuffs and soft goods based on 3D body scans to optimize user comfort, and a streamlined testing pipeline for online tuning of gait parameters. RESULTS: Team IHMC finished in fourth place behind the teams from EPFL and Angel Robotics. Although we suffered from a considerably slower flat-ground walking speed, our pilot reported marked improvements in overall effort, comfort, and ease-of-use compared to our previous device. CONCLUSIONS: Clear progress in exoskeleton development has been exhibited since the inaugural Cybathlon, with tasks involving rough terrain, stairs, and ramps now posing little threat to most of the competitors. As a result, the layout of the powered exoskeleton course will likely undergo significant modifications to further push the devices towards suitability for personal everyday use. The current tasks do not address the issue of donning and doffing, nor do they simulate a scenario similar to maneuvering a kitchen to prepare a meal, for example. An additional limitation that may be more difficult to test in a competition setting is the required upper-body effort to manipulate the device in an effective manner.


Asunto(s)
Dispositivo Exoesqueleto , Traumatismos de la Médula Espinal , Marcha , Humanos , Plata , Traumatismos de la Médula Espinal/rehabilitación , Caminata
2.
IEEE Int Conf Rehabil Robot ; 2011: 5975468, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22275666

RESUMEN

Mobility options for persons suffering from paraplegia or paraparesis are limited to mainly wheeled devices. There are significant health, psychological, and social consequences related to being confined to a wheelchair. We present the Mina, a robotic orthosis for assisting mobility, which offers a legged mobility option for these persons. Mina is an overground robotic device that is worn on the back and around the legs to provide mobility assistance for people suffering from paraplegia or paraparesis. Mina uses compliant actuation to power the hip and knee joints. For paralyzed users, balance is provided with the assistance of forearm crutches. This paper presents the evaluation of Mina with two paraplegics (SCI ASIA-A). We confirmed that with a few hours of training and practice, Mina is currently able to provide paraplegics walking mobility at speeds of up to 0.20 m/s. We further confirmed that using Mina is not physically taxing and requires little cognitive effort, allowing the user to converse and maintain eye contact while walking.


Asunto(s)
Marcha/fisiología , Aparatos Ortopédicos , Robótica/instrumentación , Robótica/métodos , Dispositivos de Autoayuda , Adulto , Femenino , Humanos , Masculino , Movimiento/fisiología , Traumatismos de la Médula Espinal/rehabilitación , Caminata/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA