Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 95(2): 677-685, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36527718

RESUMEN

Large-scale proteome analysis requires rapid and high-throughput analytical methods. We recently reported a new paradigm in proteome analysis where direct infusion and ion mobility are used instead of liquid chromatography (LC) to achieve rapid and high-throughput proteome analysis. Here, we introduce an improved direct infusion shotgun proteome analysis protocol including label-free quantification (DISPA-LFQ) using CsoDIAq software. With CsoDIAq analysis of DISPA data, we can now identify up to ∼2000 proteins from the HeLa and 293T proteomes, and with DISPA-LFQ, we can quantify ∼1000 proteins from no more than 1 µg of sample within minutes. The identified proteins are involved in numerous valuable pathways including central carbon metabolism, nucleic acid replication and transport, protein synthesis, and endocytosis. Together with a high-throughput sample preparation method in a 96-well plate, we further demonstrate the utility of this technology for performing high-throughput drug analysis in human 293T cells. The total time for data collection from a whole 96-well plate is approximately 8 h. We conclude that the DISPA-LFQ strategy presents a valuable tool for fast identification and quantification of proteins in complex mixtures, which will power a high-throughput proteomic era of drug screening, biomarker discovery, and clinical analysis.


Asunto(s)
Proteoma , Proteómica , Humanos , Proteoma/análisis , Proteómica/métodos , Cromatografía Liquida/métodos , Programas Informáticos
2.
Anal Chem ; 93(36): 12312-12319, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34469131

RESUMEN

Direct infusion shotgun proteome analysis (DISPA) is a new paradigm for expedited mass spectrometry-based proteomics, but the original data analysis workflow was onerous. Here, we introduce CsoDIAq, a user-friendly software package for the identification and quantification of peptides and proteins from DISPA data. In addition to establishing a complete and automated analysis workflow with a graphical user interface, CsoDIAq introduces algorithmic concepts to spectrum-spectrum matching to improve peptide identification speed and sensitivity. These include spectra pooling to reduce search time complexity and a new spectrum-spectrum match score called match count and cosine, which improves target discrimination in a target-decoy analysis. Fragment mass tolerance correction also increased the number of peptide identifications. Finally, we adapt CsoDIAq to standard LC-MS DIA and show that it outperforms other spectrum-spectrum matching software.


Asunto(s)
Proteoma , Programas Informáticos , Algoritmos , Cromatografía Liquida , Bases de Datos de Proteínas , Proteómica
3.
bioRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39026798

RESUMEN

Proteomes are well known to poorly correlate with transcriptomes measured from the same sample. While connected, the complex processes that impact the relationships between transcript and protein quantities remains an open research topic. Many studies have attempted to predict proteomes from transcriptomes with limited success. Here we use publicly available data from the Clinical Proteomics Tumor Analysis Consortium to show that deep learning models designed by neural architecture search (NAS) achieve improved prediction accuracy of proteome quantities from transcriptomics. We find that this benefit is largely due to including a residual connection in the architecture that allows input information to be remembered near the end of the network. Finally, we explore which groups of transcripts are functionally important for protein prediction using model interpretation with SHAP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA