Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(3): 574-586.e7, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38430907

RESUMEN

Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Ratones , Porcinos , Proteínas Virales/genética , Neuraminidasa , Subtipo H3N2 del Virus de la Influenza A , Anticuerpos Monoclonales , Anticuerpos Antivirales
3.
Nat Immunol ; 20(3): 362-372, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30742080

RESUMEN

The present vaccine against influenza virus has the inevitable risk of antigenic discordance between the vaccine and the circulating strains, which diminishes vaccine efficacy. This necessitates new approaches that provide broader protection against influenza. Here we designed a vaccine using the hypervariable receptor-binding domain (RBD) of viral hemagglutinin displayed on a nanoparticle (np) able to elicit antibody responses that neutralize H1N1 influenza viruses spanning over 90 years. Co-display of RBDs from multiple strains across time, so that the adjacent RBDs are heterotypic, provides an avidity advantage to cross-reactive B cells. Immunization with the mosaic RBD-np elicited broader antibody responses than those induced by an admixture of nanoparticles encompassing the same set of RBDs as separate homotypic arrays. Furthermore, we identified a broadly neutralizing monoclonal antibody in a mouse immunized with mosaic RBD-np. The mosaic antigen array signifies a unique approach that subverts monotypic immunodominance and allows otherwise subdominant cross-reactive B cell responses to emerge.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Nanopartículas/química , Infecciones por Orthomyxoviridae/inmunología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/virología , Reacciones Cruzadas/efectos de los fármacos , Reacciones Cruzadas/inmunología , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Inmunización , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Gripe Humana/prevención & control , Gripe Humana/virología , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología
4.
Immunity ; 55(12): 2405-2418.e7, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36356572

RESUMEN

Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Hemaglutininas , Anticuerpos ampliamente neutralizantes , Glicoproteínas Hemaglutininas del Virus de la Influenza , Anticuerpos Antivirales , Hurones , Anticuerpos Neutralizantes , Inmunización
5.
Immunity ; 54(10): 2399-2416.e6, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34481543

RESUMEN

With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here, we developed a panel of neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) that bound the receptor binding domain of the spike protein at distinct epitopes and blocked virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Although several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by ancestral SARS-CoV-2 strains, others induced escape variants in vivo or lost neutralizing activity against emerging strains. One mAb, SARS2-38, potently neutralized all tested SARS-CoV-2 variants of concern and protected mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engaged a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of neutralizing antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , SARS-CoV-2/inmunología , Secuencias de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/prevención & control , COVID-19/virología , Epítopos/química , Epítopos/metabolismo , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Ratones , Pruebas de Neutralización , Dominios Proteicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
6.
Nature ; 592(7855): 623-628, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33762730

RESUMEN

Influenza vaccines that confer broad and durable protection against diverse viral strains would have a major effect on global health, as they would lessen the need for annual vaccine reformulation and immunization1. Here we show that computationally designed, two-component nanoparticle immunogens2 induce potently neutralizing and broadly protective antibody responses against a wide variety of influenza viruses. The nanoparticle immunogens contain 20 haemagglutinin glycoprotein trimers in an ordered array, and their assembly in vitro enables the precisely controlled co-display of multiple distinct haemagglutinin proteins in defined ratios. Nanoparticle immunogens that co-display the four haemagglutinins of licensed quadrivalent influenza vaccines elicited antibody responses in several animal models against vaccine-matched strains that were equivalent to or better than commercial quadrivalent influenza vaccines, and simultaneously induced broadly protective antibody responses to heterologous viruses by targeting the subdominant yet conserved haemagglutinin stem. The combination of potent receptor-blocking and cross-reactive stem-directed antibodies induced by the nanoparticle immunogens makes them attractive candidates for a supraseasonal influenza vaccine candidate with the potential to replace conventional seasonal vaccines3.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Nanomedicina , Nanopartículas , Animales , Modelos Animales de Enfermedad , Femenino , Hurones/inmunología , Hurones/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Gripe Humana/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares
7.
J Oral Maxillofac Surg ; 78(10): 1781-1794, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32589939

RESUMEN

PURPOSE: We aimed to compare complication rates and functional outcomes in patients with bilateral mandibular fractures treated with different degrees of internal fixation rigidity. PATIENTS AND METHODS: This international, multicenter randomized controlled trial included adults with bilateral mandibular fractures located at either the angle and body, angle and symphysis, or body and symphysis. Patients were treated with either a combination of rigid fixation for the anterior fracture and nonrigid fixation for the posterior fracture (mixed fixation) or nonrigid fixation for both fractures. The primary outcome was complications within 6 weeks after surgery. Secondary outcomes were complications within 3 months, Helkimo dysfunction index, and mandibular mobility at 6 weeks and 3 months after surgery. RESULTS: Of the 315 patients enrolled, 158 were randomized to the mixed fixation group and 157 to the nonrigid fixation group. The overall complication rate at 6 weeks in the intention-to-treat population was 9.6% (95% confidence interval [CI], 5.3% to 15.6%) in the mixed fixation group and 7.8% (95% CI, 4.0% to 13.5%) in the nonrigid fixation group. With an unadjusted odds ratio of 1.25 (95% CI, 0.51 to 3.17), there were no statistically significant differences in complication rates between the 2 groups (P = .591). A multivariable model for complication risk at 6 weeks found no significant differences between treatment groups, but patients with moderate or severe displacement had a higher complication rate than those with no or minimal displacement (adjusted odds ratio, 4.58; 95% CI, 1.16 to 18.06; P = .030). There were no significant between-group differences in complication rates at 3 months. Moreover, no significant differences in Helkimo dysfunction index and mandibular mobility index at 6 weeks and 3 months were found between groups according to treatment allocated and treatment received. CONCLUSIONS: A combination of rigid and nonrigid fixation in patients with bilateral mandibular fracture has similar complication rates and functional outcomes to nonrigid fixation for both fractures.


Asunto(s)
Fijación Interna de Fracturas , Técnicas de Fijación de Maxilares , Fracturas Mandibulares , Adulto , Placas Óseas , Fijación de Fractura , Humanos , Mandíbula , Fracturas Mandibulares/diagnóstico por imagen , Fracturas Mandibulares/cirugía , Resultado del Tratamiento
8.
Genes Dev ; 26(12): 1312-25, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22677548

RESUMEN

Owing to their covalent modification by cholesterol and palmitate, Hedgehog (Hh) signaling proteins are localized predominantly to the plasma membrane of expressing cells. Yet Hh proteins are also capable of mobilizing to and eliciting direct responses from distant cells. The zebrafish you gene, identified genetically >15 years ago, was more recently shown to encode a secreted glycoprotein that acts cell-nonautonomously in the Hh signaling pathway by an unknown mechanism. We investigated the function of the protein encoded by murine Scube2, an ortholog of you, and found that it mediates release in soluble form of the mature, cholesterol- and palmitate-modified Sonic hedgehog protein signal (ShhNp) when added to cultured cells or purified detergent-resistant membrane microdomains containing ShhNp. The efficiency of Scube2-mediated release of ShhNp is enhanced by the palmitate adduct of ShhNp and by coexpression in ShhNp-producing cells of mDispatchedA (mDispA), a transporter-like protein with a previously defined role in the release of lipid-modified Hh signals. The structural determinants of Scube2 required for its activity in cultured cell assays match those required for rescue of you mutant zebrafish embryos, and we thus conclude that the role of Scube/You proteins in Hh signaling in vivo is to facilitate the release and mobilization of Hh proteins for distant action.


Asunto(s)
Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metabolismo de los Lípidos , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Sistema Libre de Células , Células Cultivadas , Colesterol/metabolismo , Medios de Cultivo/farmacología , Detergentes/farmacología , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Metabolismo de los Lípidos/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Palmitatos/farmacología , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Solubilidad/efectos de los fármacos , Relación Estructura-Actividad , Pez Cebra
10.
J Virol ; 91(5)2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003481

RESUMEN

Whole-genome sequences of representative highly pathogenic avian influenza A(H5) viruses from Vietnam were generated, comprising samples from poultry outbreaks and active market surveillance collected from January 2012 to August 2015. Six hemagglutinin gene clades were characterized. Clade 1.1.2 was predominant in southern Mekong provinces throughout 2012 and 2013 but gradually disappeared and was not detected after April 2014. Clade 2.3.2.1c viruses spread rapidly during 2012 and were detected in the south and center of the country. A number of clade 1.1.2 and 2.3.2.1c interclade reassortant viruses were detected with different combinations of internal genes derived from 2.3.2.1a and 2.3.2.1b viruses, indicating extensive cocirculation. Although reassortment generated genetic diversity at the genotype level, there was relatively little genetic drift within the individual gene segments, suggesting genetic stasis over recent years. Antigenically, clade 1.1.2, 2.3.2.1a, 2.3.2.1b, and 2.3.2.1c viruses remained related to earlier viruses and WHO-recommended prepandemic vaccine strains representing these clades. Clade 7.2 viruses, although detected in only low numbers, were the exception, as indicated by introduction of a genetically and antigenically diverse strain in 2013. Clade 2.3.4.4 viruses (H5N1 and H5N6) were likely introduced in April 2014 and appeared to gain dominance across northern and central regions. Antigenic analyses of clade 2.3.4.4 viruses compared to existing clade 2.3.4 candidate vaccine viruses (CVV) indicated the need for an updated vaccine virus. A/Sichuan/26221/2014 (H5N6) virus was developed, and ferret antisera generated against this virus were demonstrated to inhibit some but not all clade 2.3.4.4 viruses, suggesting consideration of alternative clade 2.3.4.4 CVVs.IMPORTANCE Highly pathogenic avian influenza (HPAI) A(H5) viruses have circulated continuously in Vietnam since 2003, resulting in hundreds of poultry outbreaks and sporadic human infections. Despite a significant reduction in the number of human infections in recent years, poultry outbreaks continue to occur and the virus continues to diversify. Vaccination of poultry has been used as a means to control the spread and impact of the virus, but due to the diversity and changing distribution of antigenically distinct viruses, the utility of vaccines in the face of mismatched circulating strains remains questionable. This study assessed the putative amino acid changes in viruses leading to antigenic variability, underscoring the complexity of vaccine selection for both veterinary and public health purposes. Given the overlapping geographic distributions of multiple, antigenically distinct clades of HPAI A(H5) viruses in Vietnam, the vaccine efficacy of bivalent poultry vaccine formulations should be tested in the future.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/virología , Animales , Antígenos Virales/genética , Evolución Molecular , Reordenamiento Génico , Genes Virales , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Tipificación Molecular , Filogenia , Filogeografía , Aves de Corral/virología , Análisis de Secuencia de ADN , Vietnam/epidemiología
11.
J Infect Dis ; 216(suppl_4): S529-S538, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28934457

RESUMEN

Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Secuencia de Aminoácidos , Animales , Farmacorresistencia Viral Múltiple , Genotipo , Técnicas de Genotipaje , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Aviar/tratamiento farmacológico , Gripe Aviar/transmisión , Gripe Humana/tratamiento farmacológico , Pandemias , Filogenia , Aves de Corral/virología , ARN Viral/genética , Análisis de Secuencia de ARN , Análisis Espacio-Temporal , Vietnam/epidemiología , Proteínas Virales/genética
12.
Emerg Infect Dis ; 19(12): 1963-71, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24274711

RESUMEN

We assessed drug susceptibilities of 125 avian influenza A(H5N1) viruses isolated from poultry in Vietnam during 2009-2011. Of 25 clade 1.1 viruses, all possessed a marker of resistance to M2 blockers amantadine and rimantadine; 24 were inhibited by neuraminidase inhibitors. One clade 1.1 virus contained the R430W neuraminidase gene and reduced inhibition by oseltamivir, zanamivir, and laninamivir 12-, 73-, and 29-fold, respectively. Three of 30 clade 2.3.4 viruses contained a I223T mutation and showed 7-fold reduced inhibition by oseltamivir. One of 70 clade 2.3.2.1 viruses had the H275Y marker of oseltamivir resistance and exhibited highly reduced inhibition by oseltamivir and peramivir; antiviral agents DAS181 and favipiravir inhibited H275Y mutant virus replication in MDCK-SIAT1 cells. Replicative fitness of the H275Y mutant virus was comparable to that of wildtype virus. These findings highlight the role of drug susceptibility monitoring of H5N1 subtype viruses circulating among birds to inform antiviral stockpiling decisions for pandemic preparedness.


Asunto(s)
Antivirales/farmacología , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Línea Celular , Farmacorresistencia Viral , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Mutación , Neuraminidasa/genética , Neuraminidasa/metabolismo , Oseltamivir/farmacología , Filogenia , Aves de Corral/virología , Vigilancia en Salud Pública , Vietnam/epidemiología , Replicación Viral/efectos de los fármacos
13.
Nat Comput Sci ; 3(2): 164-173, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177625

RESUMEN

Antibodies constitute a key line of defense against the diverse pathogens we encounter in our lives. Although the interactions between a single antibody and a single virus are routinely characterized in exquisite detail, the inherent tradeoffs between attributes such as potency and breadth remain unclear. Moreover, there is a wide gap between the discrete interactions of single antibodies and the collective behavior of antibody mixtures. Here we develop a form of antigenic cartography called a 'neutralization landscape' that visualizes and quantifies antibody-virus interactions for antibodies targeting the influenza hemagglutinin stem. This landscape transforms the potency-breadth tradeoff into a readily solvable geometry problem. With it, we decompose the collective neutralization from multiple antibodies to characterize the composition and functional properties of the stem antibodies within. Looking forward, this framework can leverage the serological assays routinely performed for influenza surveillance to analyze how an individual's antibody repertoire evolves after vaccination or infection.


Asunto(s)
Gripe Humana , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas
15.
Sci Transl Med ; 15(692): eade4976, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37075126

RESUMEN

Current yearly seasonal influenza vaccines primarily induce an antibody response directed against the immunodominant but continually diversifying hemagglutinin (HA) head region. These antibody responses provide protection against the vaccinating strain but little cross-protection against other influenza strains or subtypes. To focus the immune response on subdominant but more conserved epitopes on the HA stem that might protect against a broad range of influenza strains, we developed a stabilized H1 stem immunogen lacking the immunodominant head displayed on a ferritin nanoparticle (H1ssF). Here, we evaluated the B cell response to H1ssF in healthy adults ages 18 to 70 in a phase 1 clinical trial (NCT03814720). We observed both a strong plasmablast response and sustained elicitation of cross-reactive HA stem-specific memory B cells after vaccination with H1ssF in individuals of all ages. The B cell response was focused on two conserved epitopes on the H1 stem, with a highly restricted immunoglobulin repertoire unique to each epitope. On average, two-thirds of the B cell and serological antibody response recognized a central epitope on the H1 stem and exhibited broad neutralization across group 1 influenza virus subtypes. The remaining third recognized an epitope near the viral membrane anchor and was largely limited to H1 strains. Together, we demonstrate that an H1 HA immunogen lacking the immunodominant HA head produces a robust and broadly neutralizing HA stem-directed B cell response.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Adolescente , Adulto , Anciano , Humanos , Persona de Mediana Edad , Adulto Joven , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas
16.
Sci Transl Med ; 15(692): eade4790, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37075129

RESUMEN

Influenza vaccines could be improved by platforms inducing cross-reactive immunity. Immunodominance of the influenza hemagglutinin (HA) head in currently licensed vaccines impedes induction of cross-reactive neutralizing stem-directed antibodies. A vaccine without the variable HA head domain has the potential to focus the immune response on the conserved HA stem. This first-in-human dose-escalation open-label phase 1 clinical trial (NCT03814720) tested an HA stabilized stem ferritin nanoparticle vaccine (H1ssF) based on the H1 HA stem of A/New Caledonia/20/1999. Fifty-two healthy adults aged 18 to 70 years old enrolled to receive either 20 µg of H1ssF once (n = 5) or 60 µg of H1ssF twice (n = 47) with a prime-boost interval of 16 weeks. Thirty-five (74%) 60-µg dose participants received the boost, whereas 11 (23%) boost vaccinations were missed because of public health restrictions in the early stages of the COVID-19 pandemic. The primary objective of this trial was to evaluate the safety and tolerability of H1ssF, and the secondary objective was to evaluate antibody responses after vaccination. H1ssF was safe and well tolerated, with mild solicited local and systemic reactogenicity. The most common symptoms included pain or tenderness at the injection site (n = 10, 19%), headache (n = 10, 19%), and malaise (n = 6, 12%). We found that H1ssF elicited cross-reactive neutralizing antibodies against the conserved HA stem of group 1 influenza viruses, despite previous H1 subtype head-specific immunity. These responses were durable, with neutralizing antibodies observed more than 1 year after vaccination. Our results support this platform as a step forward in the development of a universal influenza vaccine.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Adolescente , Adulto , Anciano , Humanos , Persona de Mediana Edad , Adulto Joven , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Pandemias
17.
Nature ; 443(7109): 359-63, 2006 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-16964239

RESUMEN

RNA interference (RNAi) in both plants and animals is mediated by small RNAs of approximately 21-23 nucleotides in length for regulation of target gene expression at multiple levels through partial sequence complementarities. Combined with widespread genome sequencing, experimental use of RNAi has the potential to interrogate systematically all genes in a given organism with respect to a particular function. However, owing to a tolerance for mismatches and gaps in base-pairing with targets, small RNAs could have up to hundreds of potential target sequences in a genome, and some small RNAs in mammalian systems have been shown to affect the levels of many messenger RNAs besides their intended targets. The use of long double-stranded RNAs (dsRNAs) in Drosophila, where Dicer-mediated processing produces small RNAs inside cells, has been thought to reduce the probability of such 'off-target effects' (OTEs). Here we show, however, that OTEs mediated by short homology stretches within long dsRNAs are prevalent in Drosophila. We have performed a genome-wide RNAi screen for novel components of Wingless (Wg) signal transduction in Drosophila S2R + cells, and found few, if any, legitimate candidates. Rather, many of the top candidates exert their effects on Wg response through OTEs on known pathway components or through promiscuous OTEs produced by tandem trinucleotide repeats present in many dsRNAs and genes. Genes containing such repeats are over-represented in candidate lists from published screens, suggesting that they represent a common class of false positives. Our results suggest simple measures to improve the reliability of genome-wide RNAi screens in Drosophila and other organisms.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Interferencia de ARN , Animales , Secuencia de Bases , Línea Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Reacciones Falso Positivas , Genes de Insecto/genética , Genes Reporteros/genética , Genoma , Proteínas Hedgehog , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Ribonucleasa III/metabolismo , Transducción de Señal , Proteína Wnt1
18.
Front Immunol ; 13: 1002286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248851

RESUMEN

As new vaccine technologies and platforms, such as nanoparticles and novel adjuvants, are developed to aid in the establishment of a universal influenza vaccine, studying traditional influenza split/subunit vaccines should not be overlooked. Commercially available vaccines are typically studied in terms of influenza A H1 and H3 viruses but influenza B viruses need to be examined as well. Thus, there is a need to both understand the limitations of split/subunit vaccines and develop strategies to overcome those limitations, particularly their ability to elicit cross-reactive antibodies to the co-circulating Victoria (B-V) and Yamagata (B-Y) lineages of human influenza B viruses. In this study, we compared three commercial influenza hemagglutinin (HA) split/subunit vaccines, one quadrivalent (H1, H3, B-V, B-Y HAs) and two trivalent (H1, H3, B-V HAs), to characterize potential differences in their antibody responses and protection against a B-Y challenge. We found that the trivalent adjuvanted vaccine Fluad, formulated without B-Y HA, was able to produce antibodies to B-Y (cross-lineage) on a similar level to those elicited from a quadrivalent vaccine (Flucelvax) containing both B-V and B-Y HAs. Interestingly, Fluad protected mice from a lethal cross-lineage B-Y viral challenge, while another trivalent vaccine, Fluzone HD, failed to elicit antibodies or full protection following challenge. Fluad immunization also diminished viral burden in the lungs compared to Fluzone and saline groups. The success of a trivalent vaccine to provide protection from a cross-lineage influenza B challenge, similar to a quadrivalent vaccine, suggests that further analysis of different split/subunit vaccine formulations could identify mechanisms for vaccines to target antigenically different viruses. Understanding how to increase the breadth of the immune response following immunization will be needed for universal influenza vaccine development.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , Hemaglutininas , Humanos , Virus de la Influenza B , Gripe Humana/prevención & control , Ratones , Vacunas Combinadas , Vacunas de Subunidad
19.
Nat Commun ; 13(1): 1825, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383176

RESUMEN

Influenza virus neuraminidase (NA) is a major antiviral drug target and has recently reemerged as a key target of antibody-mediated protective immunity. Here we show that recombinant NAs across non-bat subtypes adopt various tetrameric conformations, including an "open" state that may help explain poorly understood variations in NA stability across viral strains and subtypes. We use homology-directed protein design to uncover the structural principles underlying these distinct tetrameric conformations and stabilize multiple recombinant NAs in the "closed" state, yielding two near-atomic resolution structures of NA by cryo-EM. In addition to enhancing thermal stability, conformational stabilization improves affinity to protective antibodies elicited by viral infection, including antibodies targeting a quaternary epitope and the broadly conserved catalytic site. Stabilized NAs can also be integrated into viruses without affecting fitness. Our findings provide a deeper understanding of NA structure, stability, and antigenicity, and establish design strategies for reinforcing the conformational integrity of recombinant NA proteins.


Asunto(s)
Neuraminidasa , Orthomyxoviridae/enzimología , Proteínas Virales , Anticuerpos Antivirales , Epítopos , Neuraminidasa/química , Proteínas Recombinantes/química , Proteínas Virales/química
20.
Science ; 376(6591): eabn8897, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35324257

RESUMEN

The rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant and its resistance to neutralization by vaccinee and convalescent sera are driving a search for monoclonal antibodies with potent neutralization. To provide insight into effective neutralization, we determined cryo-electron microscopy structures and evaluated receptor binding domain (RBD) antibodies for their ability to bind and neutralize B.1.1.529. Mutations altered 16% of the B.1.1.529 RBD surface, clustered on an RBD ridge overlapping the angiotensin-converting enzyme 2 (ACE2)-binding surface and reduced binding of most antibodies. Substantial inhibitory activity was retained by select monoclonal antibodies-including A23-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309, and LY-CoV1404-that accommodated these changes and neutralized B.1.1.529. We identified combinations of antibodies with synergistic neutralization. The analysis revealed structural mechanisms for maintenance of potent neutralization against emerging variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/terapia , Microscopía por Crioelectrón , Humanos , Inmunización Pasiva , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA