Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Data ; 11(1): 751, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987534

RESUMEN

The complex meso- and microclimatic heterogeneity inherent to mountainous regions, driven by both topographic and biotic factors, and the lack of observations, poses significant challenges to using climate models to predict and understand impacts at various scales. We present here a six-year dataset (2017-2022) of continuous climatic measurements collected at five elevations from 983 m to 2705 m above sea level in the Val Mazia - Matschertal valley in the Italian Alps. The measurements include the air temperature, relative humidity, wind speed and direction, solar radiation, soil properties, precipitation, and snow height. Collected within the European Long-Term Ecological Research program (LTER), this dataset is freely available in an open access repository. The time series may be valuable for the validation of regional climate models, atmospheric exchange modelling, and providing support for hydrological models and remote sensing products in mountain environments. Additionally, our data may be useful for research on the influence of elevation on ecological processes such as vegetation growth, plant composition, and soil biology. Beyond its utility in advancing such fundamental research, meteorological monitoring data contribute to informed socio-political decisions on climate adaptation strategies, land management, and water resource planning, enhancing the safety and resilience of mountain communities and biodiversity.

2.
Ecol Evol ; 14(7): e11714, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39005886

RESUMEN

Climate change is leading to advanced snowmelt date in alpine regions. Consequently, alpine plant species and ecosystems experience substantial changes due to prolonged phenological seasons, while the responses, mechanisms and implications remain widely unclear. In this 3-year study, we investigated the effects of advancing snowmelt on the phenology of alpine snowbed species. We related microclimatic drivers to species and ecosystem phenology using in situ monitoring and phenocams. We further used predictive modelling to determine whether early snowmelt sites could be used as sentinels for future conditions. Temperature during the snow-free period primarily influenced flowering phenology, followed by snowmelt timing. Salix herbacea and Gnaphalium supinum showed the most opportunistic phenology, while annual Euphrasia minima struggled to complete its phenology in short growing seasons. Phenological responses varied more between years than sites, indicating potential local long-term adaptations and suggesting these species' potential to track future earlier melting dates. Phenocams captured ecosystem-level phenology (start, peak and end of phenological season) but failed to explain species-level variance. Our findings highlight species-specific responses to advancing snowmelt, with snowbed species responding highly opportunistically to changes in snowmelt timings while following species-specific developmental programs. While species from surrounding grasslands may benefit from extended growing seasons, snowbed species may become outcompeted due to internal-clock-driven, non-opportunistic senescence, despite displaying a high level of phenological plasticity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA