Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 29(4): 1529-1540, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33388419

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has yielded unprecedented outcomes in some patients with hematological malignancies; however, inhibition by the tumor microenvironment has prevented the broader success of CART cell therapy. We used chronic lymphocytic leukemia (CLL) as a model to investigate the interactions between the tumor microenvironment and CART cells. CLL is characterized by an immunosuppressive microenvironment, an abundance of systemic extracellular vesicles (EVs), and a relatively lower durable response rate to CART cell therapy. In this study, we characterized plasma EVs from untreated CLL patients and identified their leukemic cell origin. CLL-derived EVs were able to induce a state of CART cell dysfunction characterized by phenotypical, functional, and transcriptional changes of exhaustion. We demonstrate that, specifically, PD-L1+ CLL-derived EVs induce CART cell exhaustion. In conclusion, we identify an important mechanism of CART cell exhaustion induced by EVs from CLL patients.


Asunto(s)
Antígeno B7-H1/sangre , Leucemia Linfocítica Crónica de Células B/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Antígeno B7-H1/genética , Línea Celular Tumoral , Vesículas Extracelulares/genética , Vesículas Extracelulares/inmunología , Femenino , Humanos , Inmunoterapia Adoptiva/métodos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Receptores de Antígenos de Linfocitos T/sangre , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Microambiente Tumoral/efectos de los fármacos
2.
bioRxiv ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798314

RESUMEN

Opioid use disorder is heritable, yet its genetic etiology is largely unknown. Analysis of addiction model traits in rodents (e.g., opioid behavioral sensitivity and withdrawal) can facilitate genetic and mechanistic discovery. C57BL/6J and C57BL/6NJ substrains have extremely limited genetic diversity, yet can show reliable phenotypic diversity which together, can facilitate gene discovery. The C57BL/6NJ substrain was less sensitive to oxycodone (OXY)-induced locomotor activity compared to the C57BL/6J substrain. Quantitative trait locus (QTL) mapping in an F2 cross identified a distal chromosome 1 QTL explaining 7-12% of the variance in OXY locomotor sensitivity and anxiety-like withdrawal in the elevated plus maze. We identified a second QTL for withdrawal on chromosome 5 near the candidate gene Gabra2 (alpha-2 subunit of GABA-A receptor) explaining 9% of the variance. Next, we generated recombinant lines from an F2 founder spanning the distal chromosome 1 locus (163-181 Mb), captured the QTL for OXY sensitivity and withdrawal, and fine-mapped a 2.45-Mb region (170.16-172.61 Mb). There were five striatal cis-eQTL transcripts in this region (Pcp4l1, Ncstn, Atp1a2, Kcnj9, Igsf9), two of which were confirmed at the protein level (KCNJ9, ATP1A2). Kcnj9, a.k.a., GIRK3, codes for a potassium channel that is a major effector of mu opioid receptor signaling. Atp1a2 codes for a subunit of a Na+/K+ ATPase enzyme that regulates neuronal excitability and shows adaptations following chronic opioid administration. To summarize, we identified genetic sources of opioid behavioral differences in C57BL/6 substrains, two of the most widely and often interchangeably used substrains in opioid addiction research.

3.
Cancer Immunol Res ; 9(8): 952-966, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074677

RESUMEN

Many tumors exhibit increased incorporation of sialic acids into cell-surface glycans, which impact the tumor microenvironment. Sialic acid immunoglobulin-like lectins (Siglec) are receptors that recognize sialic acids and modulate immune responses, including responses to tumors. However, the roles of individual sialyltransferases in tumorigenesis and tumor growth are not well understood. Here, we examined the sialyltransferase ST8Sia6, which generated α2,8-linked disialic acids that bind to murine Siglec-E and human Siglec-7 and -9. Increased ST8Sia6 expression was found on many human tumors and associated with decreased survival in several cancers, including colon cancer. Because of this, we engineered MC38 and B16-F10 tumor lines to express ST8Sia6. ST8Sia6-expressing MC38 and B16-F10 tumors exhibited faster growth and led to decreased survival, which required host Siglec-E. ST8Sia6 expression on tumors also altered macrophage polarization toward M2, including upregulation of the immune modulator arginase, which also required Siglec-E. ST8Sia6 also accelerated tumorigenesis in a genetically engineered, spontaneous murine model of colon cancer, decreasing survival from approximately 6 months to 67 days. Thus, ST8Sia6 expression on tumors inhibits antitumor immune responses to accelerate tumor growth.


Asunto(s)
Inmunidad Innata/inmunología , Inmunidad/inmunología , Sialiltransferasas/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Transfección , Microambiente Tumoral
4.
JCI Insight ; 5(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32453712

RESUMEN

Alopecia areata (AA) is a common autoimmune condition, presenting initially with loss of hair without other overt skin changes. The unremarkable appearance of the skin surface contrasts with the complex immune activity occurring at the hair follicle. AA pathogenesis is due to the loss of immune privilege of the hair follicle, leading to autoimmune attack. Although the literature has focused on CD8+ T cells, vital roles for CD4+ T cells and antigen-presenting cells have been suggested. Here, we use single-cell sequencing to reveal distinct expression profiles of immune cells in murine AA. We found clonal expansions of both CD4+ and CD8+ T cells, with shared clonotypes across varied transcriptional states. The murine AA data were used to generate highly predictive models of human AA disease. Finally, single-cell sequencing of T cells in human AA recapitulated the clonotypic findings and the gene expression of the predictive models.


Asunto(s)
Alopecia Areata/metabolismo , Linfocitos T/metabolismo , Transcriptoma/fisiología , Animales , Enfermedades Autoinmunes/inmunología , Folículo Piloso/inmunología , Folículo Piloso/metabolismo , Folículo Piloso/patología , Humanos , Ratones , Piel/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA