Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Biomol NMR ; 78(2): 73-86, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38546905

RESUMEN

Monoclonal antibodies (mAbs) are biotherapeutics that have achieved outstanding success in treating many life-threatening and chronic diseases. The recognition of an antigen is mediated by the fragment antigen binding (Fab) regions composed by four different disulfide bridge-linked immunoglobulin domains. NMR is a powerful method to assess the integrity, the structure and interaction of Fabs, but site specific analysis has been so far hampered by the size of the Fabs and the lack of approaches to produce isotopically labeled samples. We proposed here an efficient in vitro method to produce [15N, 13C, 2H]-labeled Fabs enabling high resolution NMR investigations of these powerful therapeutics. As an open system, the cell-free expression mode enables fine-tuned control of the redox potential in presence of disulfide bond isomerase to enhance the formation of native disulfide bonds. Moreover, inhibition of transaminases in the S30 cell-free extract offers the opportunity to produce perdeuterated Fab samples directly in 1H2O medium, without the need for a time-consuming and inefficient refolding process. This specific protocol was applied to produce an optimally labeled sample of a therapeutic Fab, enabling the sequential assignment of 1HN, 15N, 13C', 13Cα, 13Cß resonances of a full-length Fab. 90% of the backbone resonances of a Fab domain directed against the human LAMP1 glycoprotein were assigned successfully, opening new opportunities to study, at atomic resolution, Fabs' higher order structures, dynamics and interactions, using solution-state NMR.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas , Marcaje Isotópico , Resonancia Magnética Nuclear Biomolecular , Fragmentos Fab de Inmunoglobulinas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Marcaje Isotópico/métodos , Humanos , Sistema Libre de Células , Isótopos de Nitrógeno , Anticuerpos Monoclonales/química
2.
Biochem Soc Trans ; 50(6): 1555-1567, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36382942

RESUMEN

The study of protein structure, dynamics and function by NMR spectroscopy commonly requires samples that have been enriched ('labelled') with the stable isotopes 13C and/or 15N. The standard approach is to uniformly label a protein with one or both of these nuclei such that all C and/or N sites are in principle 'NMR-visible'. NMR spectra of uniformly labelled proteins can be highly complicated and suffer from signal overlap. Moreover, as molecular size increases the linewidths of NMR signals broaden, which decreases sensitivity and causes further spectral congestion. Both effects can limit the type and quality of information available from NMR data. Problems associated with signal overlap and signal broadening can often be alleviated though the use of alternative, non-uniform isotopic labelling patterns. Specific isotopic labelling 'turns on' signals at selected sites while the rest of the protein is NMR-invisible. Conversely, specific isotopic unlabelling (also called 'reverse' labelling) 'turns off' selected signals while the rest of the protein remains NMR-visible. Both approaches can simplify NMR spectra, improve sensitivity, facilitate resonance assignment and permit a range of different NMR strategies when combined with other labelling tools and NMR experiments. Here, we review methods for producing proteins with enrichment of stable NMR-visible isotopes, with particular focus on residue-specific labelling and reverse labelling using Escherichia coli expression systems. We also explore how these approaches can aid NMR studies of proteins.


Asunto(s)
Escherichia coli , Proteínas , Resonancia Magnética Nuclear Biomolecular , Isótopos de Nitrógeno , Isótopos de Carbono , Marcaje Isotópico/métodos , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química
3.
J Biomol NMR ; 75(6-7): 221-232, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34041691

RESUMEN

Methyl moieties are highly valuable probes for quantitative NMR studies of large proteins. Hence, their assignment is of the utmost interest to obtain information on both interactions and dynamics of proteins in solution. Here, we present the synthesis of a new precursor that allows connection of leucine and valine pro-S methyl moieties to backbone atoms by linear 13C-chains. This optimized 2H/13C-labelled acetolactate precursor can be combined with existing 13C/2H-alanine and isoleucine precursors in order to directly transfer backbone assignment to the corresponding methyl groups. Using this simple approach leucine and valine pro-S methyl groups can be assigned using a single sample without requiring correction of 1H/2H isotopic shifts on 13C resonances. The approach was demonstrated on the N-terminal domain of human HSP90, for which complete assignment of Ala-ß, Ile-δ1, Leu-δ2, Met-ε, Thr-γ and Val-γ2 methyl groups was obtained.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Leucina/química , Dominios Proteicos , Valina/química
4.
Nature ; 468(7324): 709-12, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21124458

RESUMEN

Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused widespread outbreaks of debilitating human disease in the past five years. CHIKV invasion of susceptible cells is mediated by two viral glycoproteins, E1 and E2, which carry the main antigenic determinants and form an icosahedral shell at the virion surface. Glycoprotein E2, derived from furin cleavage of the p62 precursor into E3 and E2, is responsible for receptor binding, and E1 for membrane fusion. In the context of a concerted multidisciplinary effort to understand the biology of CHIKV, here we report the crystal structures of the precursor p62-E1 heterodimer and of the mature E3-E2-E1 glycoprotein complexes. The resulting atomic models allow the synthesis of a wealth of genetic, biochemical, immunological and electron microscopy data accumulated over the years on alphaviruses in general. This combination yields a detailed picture of the functional architecture of the 25 MDa alphavirus surface glycoprotein shell. Together with the accompanying report on the structure of the Sindbis virus E2-E1 heterodimer at acidic pH (ref. 3), this work also provides new insight into the acid-triggered conformational change on the virus particle and its inbuilt inhibition mechanism in the immature complex.


Asunto(s)
Virus Chikungunya/química , Glicoproteínas de Membrana/química , Proteínas del Envoltorio Viral/química , Virión/química , Animales , Línea Celular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Drosophila melanogaster , Concentración de Iones de Hidrógeno , Modelos Moleculares , Complejos Multiproteicos/química , Multimerización de Proteína , Precursores de Proteínas/química , Estructura Cuaternaria de Proteína , Proteínas Virales de Fusión/química
5.
J Biol Chem ; 288(25): 18561-73, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23653352

RESUMEN

Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 µM for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial.


Asunto(s)
Plasmodium vivax/enzimología , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Serina Proteasas/química , Secuencia de Aminoácidos , Animales , Antimaláricos/química , Antimaláricos/farmacología , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Femenino , Cinética , Malaria/parasitología , Malaria/prevención & control , Merozoítos/efectos de los fármacos , Merozoítos/enzimología , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/enzimología , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Homología de Secuencia de Aminoácido , Serina Proteasas/genética , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Células Sf9 , Especificidad por Sustrato
6.
J Biomol NMR ; 57(3): 251-62, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24078041

RESUMEN

The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D2O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d10. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.


Asunto(s)
Marcaje Isotópico , Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Valina/química , Proteínas de Unión al ADN/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Peso Molecular , Proteínas/genética , Proteínas/metabolismo , Reproducibilidad de los Resultados , Dedos de Zinc
7.
Biomol NMR Assign ; 16(2): 257-266, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35701717

RESUMEN

HSP90 is a major molecular chaperone that helps both folding and stabilization of various client proteins often implicated in growth control and cell survival such as kinases and transcription factors. However, among HSP90 clients are also found numerous oncoproteins and, through its assistance to them, HSP90 has consequently been reported as a promising anticancer target. Several ligand chemotypes, including resorcinol type ligands, were found to inhibit HSP90, most of them in an ATP competitive manner. Binding of some of these ligands modify significantly the NMR spectrum of the HSP90 ATP binding domain compared to the apo protein spectrum, hampering assignment transfer from the previously assigned human HSP90 apo state. Here we report the assignment of the 1HN, 15N, 13C', 13Cα, 13Cß, 1Hmethyl, and 13Cmethyl chemical shifts of the 29 kDa HSP90 N-terminal domain bound to a long residence time resorcinol type inhibitor: 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-N-furan-2-ylmethyl-2,4-dihydroxy-N-methyl-benzamide. 92% of the backbone resonances and 100% of the [1H, 13C]-resonances of Aß, Mε, Tγ, Lδ2, Vγ2 and Iδ1 methyl groups were successfully assigned, including for the first time the assignment of the segment covering the nucleotide/drug binding site. Secondary structure predictions based on the NMR assignment reveal a structural rearrangement of HSP90 N-terminal domain upon ligand binding. The long residence time ligand induces the formation of a continuous helix covering the ligand binding site of HSP90 N-terminal domain accounting for the large differences observed in the NMR spectra between the apo and bound proteins.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Chaperonas Moleculares , Adenosina Trifosfato/metabolismo , Benzamidas , Sitios de Unión , Furanos , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ligandos , Resonancia Magnética Nuclear Biomolecular , Nucleótidos/metabolismo , Unión Proteica , Resorcinoles , Factores de Transcripción/metabolismo
8.
Nat Commun ; 13(1): 7601, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494347

RESUMEN

HSP90 are abundant molecular chaperones, assisting the folding of several hundred client proteins, including substrates involved in tumor growth or neurodegenerative diseases. A complex set of large ATP-driven structural changes occurs during HSP90 functional cycle. However, the existence of such structural rearrangements in apo HSP90 has remained unclear. Here, we identify a metastable excited state in the isolated human HSP90α ATP binding domain. We use solution NMR and mutagenesis to characterize structures of both ground and excited states. We demonstrate that in solution the HSP90α ATP binding domain transiently samples a functionally relevant ATP-lid closed state, distant by more than 30 Å from the ground state. NMR relaxation enables to derive information on the kinetics and thermodynamics of this interconversion, while molecular dynamics simulations establish that the ATP-lid in closed conformation is a metastable exited state. The precise description of the dynamics and structures sampled by human HSP90α ATP binding domain provides information for the future design of new therapeutic ligands.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Chaperonas Moleculares , Humanos , Proteínas HSP90 de Choque Térmico/metabolismo , Unión Proteica , Chaperonas Moleculares/metabolismo , Conformación Molecular , Adenosina Trifosfato/metabolismo , Conformación Proteica , Sitios de Unión
9.
Methods Mol Biol ; 2199: 127-149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125648

RESUMEN

The cell-free synthesis is an efficient strategy to produce in large scale protein samples for structural investigations. In vitro synthesis allows for significant reduction of production time, simplification of purification steps and enables production of both soluble and membrane proteins. The cell-free reaction is an open system and can be performed in presence of many additives such as cofactors, inhibitors, redox systems, chaperones, detergents, lipids, nanodisks, and surfactants to allow for the expression of toxic membrane proteins or intrinsically disordered proteins. In this chapter we present protocols to prepare E. coli S30 cellular extracts, T7 RNA polymerase, and their use for in vitro protein expression. Optimizations of the protocol are presented for preparation of protein samples enriched in deuterium, a prerequisite for the study of high-molecular-weight proteins by NMR spectroscopy. An efficient production of perdeuterated proteins is achieved together with a full protonation of all the amide NMR probes, without suffering from residual protonation on aliphatic carbons. Application to the production of the 468 kDa TET2 protein assembly for NMR investigations is presented.


Asunto(s)
Proteínas de Unión al ADN , Deuterio/química , Escherichia coli/química , Marcaje Isotópico , Proteínas Proto-Oncogénicas , Sistema Libre de Células/química , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dioxigenasas , Humanos , Resonancia Magnética Nuclear Biomolecular , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
10.
Sci Adv ; 4(9): eaau4196, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30255156

RESUMEN

Chaperonins are ubiquitous protein assemblies present in bacteria, eukaryota, and archaea, facilitating the folding of proteins, preventing protein aggregation, and thus participating in maintaining protein homeostasis in the cell. During their functional cycle, they bind unfolded client proteins inside their double ring structure and promote protein folding by closing the ring chamber in an adenosine 5'-triphosphate (ATP)-dependent manner. Although the static structures of fully open and closed forms of chaperonins were solved by x-ray crystallography or electron microscopy, elucidating the mechanisms of such ATP-driven molecular events requires studying the proteins at the structural level under working conditions. We introduce an approach that combines site-specific nuclear magnetic resonance observation of very large proteins, enabled by advanced isotope labeling methods, with an in situ ATP regeneration system. Using this method, we provide functional insight into the 1-MDa large hsp60 chaperonin while processing client proteins and reveal how nucleotide binding, hydrolysis, and release control switching between closed and open states. While the open conformation stabilizes the unfolded state of client proteins, the internalization of the client protein inside the chaperonin cavity speeds up its functional cycle. This approach opens new perspectives to study structures and mechanisms of various ATP-driven biological machineries in the heat of action.


Asunto(s)
Chaperonina 60/química , Chaperonina 60/metabolismo , Chaperoninas del Grupo II/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Chaperonina 60/genética , Chaperoninas del Grupo II/metabolismo , Malato Sintasa/química , Malato Sintasa/metabolismo , Muramidasa/química , Muramidasa/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica , Desplegamiento Proteico , Pyrococcus horikoshii/química
11.
Sci Adv ; 3(4): e1601601, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28435872

RESUMEN

The spontaneous formation of biological higher-order structures from smaller building blocks, called self-assembly, is a fundamental attribute of life. Although the protein self-assembly is a time-dependent process that occurs at the molecular level, its current understanding originates either from static structures of trapped intermediates or from modeling. Nuclear magnetic resonance (NMR) spectroscopy has the unique ability to monitor structural changes in real time; however, its size limitation and time-resolution constraints remain a challenge when studying the self-assembly of large biological particles. We report the application of methyl-specific isotopic labeling combined with relaxation-optimized NMR spectroscopy to overcome both size- and time-scale limitations. We report for the first time the self-assembly process of a half-megadalton protein complex that was monitored at the structural level, including the characterization of intermediate states, using a mutagenesis-free strategy. NMR was used to obtain individual kinetics data on the different transient intermediates and the formation of final native particle. In addition, complementary time-resolved electron microscopy and native mass spectrometry were used to characterize the low-resolution structures of oligomerization intermediates.


Asunto(s)
Proteínas Arqueales/química , Péptido Hidrolasas/química , Multimerización de Proteína , Pyrococcus horikoshii/enzimología , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína
12.
Chem Commun (Camb) ; 52(61): 9558-61, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27385633

RESUMEN

Solid-state NMR spectroscopy allows the characterization of the structure, interactions and dynamics of insoluble and/or very large proteins. Sensitivity and resolution are often major challenges for obtaining atomic-resolution information, in particular for very large protein complexes. Here we show that the use of deuterated, specifically CH3-labelled proteins result in significant sensitivity gains compared to previously employed CHD2 labelling, while line widths increase only marginally. We apply this labelling strategy to a 468 kDa-large dodecameric aminopeptidase, TET2, and the 1.6 MDa-large 50S ribosome subunit of Thermus thermophilus.

13.
PLoS One ; 10(7): e0134292, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26222304

RESUMEN

Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting.


Asunto(s)
Adhesinas Bacterianas/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/química , Antígenos de Protozoos/genética , Reacciones Cruzadas , Epítopos/química , Epítopos/genética , Eritrocitos/parasitología , Femenino , Humanos , Vacunas contra la Malaria/química , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Ratones , Ratones Endogámicos BALB C , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Formación de Roseta
14.
Methods Mol Biol ; 1091: 229-44, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24203337

RESUMEN

There is increasing interest in applying NMR spectroscopy to the study of large protein assemblies. Development of methyl-specific labeling protocols combined with improved NMR spectroscopy enable nowadays studies of proteins complexes up to 1 MDa. For such large complexes, the major interest lies in obtaining structural, dynamic and interaction information in solution, which requires sequence-specific resonance assignment of NMR signals. While such analysis is quite standard for small proteins, it remains one of the major bottlenecks when the size of the protein increases. Here, we describe implementation and latest improvements of SeSAM, a fast and user-friendly approach for assignment of methyl resonances in large proteins using mutagenesis. We have improved culture medium to boost the production of methyl-specifically labeled proteins, allowing us to perform small-scale parallel production and purification of a library of (13)CH3-specifically labeled mutants. This optimized protocol is illustrated by assignment of Alanine, Isoleucine, and Valine methyl groups of the homododecameric aminopeptidase PhTET2. We estimated that this improved method allows assignment of ca. 100 methyl cross-peaks in 2 weeks, including 4 days of NMR time and less than 2 k€ of isotopic materials.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Proteínas/química , Aminoácidos/química , Biblioteca de Genes , Marcaje Isotópico , Peso Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/genética
15.
Nat Commun ; 5: 4833, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25204226

RESUMEN

The Plasmodium subtilase SUB1 plays a pivotal role during the egress of malaria parasites from host hepatocytes and erythrocytes. Here we report the crystal structure of full-length SUB1 from the human-infecting parasite Plasmodium vivax, revealing a bacterial-like catalytic domain in complex with a Plasmodium-specific prodomain. The latter displays a novel architecture with an amino-terminal insertion that functions as a 'belt', embracing the catalytic domain to further stabilize the quaternary structure of the pre-protease, and undergoes calcium-dependent autoprocessing during subsequent activation. Although dispensable for recombinant enzymatic activity, the SUB1 'belt' could not be deleted in Plasmodium berghei, suggesting an essential role of this domain for parasite development in vivo. The SUB1 structure not only provides a valuable platform to develop new anti-malarial candidates against this promising drug target, but also defines the Plasmodium-specific 'belt' domain as a key calcium-dependent regulator of SUB1 during parasite egress from host cells.


Asunto(s)
Plasmodium berghei , Plasmodium vivax , Proteínas Protozoarias/metabolismo , Subtilisinas/metabolismo , Secuencia de Aminoácidos , Antimaláricos/uso terapéutico , Cristalografía , Humanos , Malaria Vivax/tratamiento farmacológico , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Estructura Terciaria de Proteína
16.
PLoS One ; 6(7): e21812, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21818266

RESUMEN

BACKGROUND: Psalmopeotoxin I (PcFK1), a protein of 33 aminoacids derived from the venom of the spider Psalmopoeus Cambridgei, is able to inhibit the growth of Plasmodium falciparum malaria parasites with an IC50 in the low micromolar range. PcFK1 was proposed to act as an ion channel inhibitor, although experimental validation of this mechanism is lacking. The surface loops of PcFK1 have some sequence similarity with the parasite protein sequences cleaved by PfSUB1, a subtilisin-like protease essential for egress of Plasmodium falciparum merozoites and invasion into erythrocytes. As PfSUB1 has emerged as an interesting drug target, we explored the hypothesis that PcFK1 targeted PfSUB1 enzymatic activity. FINDINGS: Molecular modeling and docking calculations showed that one loop could interact with the binding site of PfSUB1. The calculated free energy of binding averaged -5.01 kcal/mol, corresponding to a predicted low-medium micromolar constant of inhibition. PcFK1 inhibited the enzymatic activity of the recombinant PfSUB1 enzyme and the in vitro P. falciparum culture in a range compatible with our bioinformatics analysis. Using contact analysis and free energy decomposition we propose that residues A14 and Q15 are important in the interaction with PfSUB1. CONCLUSIONS: Our computational reverse engineering supported the hypothesis that PcFK1 targeted PfSUB1, and this was confirmed by experimental evidence showing that PcFK1 inhibits PfSUB1 enzymatic activity. This outlines the usefulness of advanced bioinformatics tools to predict the function of a protein structure. The structural features of PcFK1 represent an interesting protein scaffold for future protein engineering.


Asunto(s)
Péptidos/farmacología , Plasmodium falciparum/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Protozoarias/antagonistas & inhibidores , Genética Inversa/métodos , Venenos de Araña/farmacología , Secuencia de Aminoácidos , Biocatálisis/efectos de los fármacos , Merozoítos/citología , Merozoítos/efectos de los fármacos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Péptidos/química , Plasmodium falciparum/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Solventes , Venenos de Araña/química , Subtilisina/metabolismo
17.
J Biol Chem ; 283(22): 15193-200, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18378683

RESUMEN

It is well established that the human immunodeficiency virus-1 envelope glycoprotein surface unit, gp120, binds to cell-associated heparan sulfate (HS). Virus infectivity is increased by such interaction, and a variety of soluble polyanions efficiently neutralize immunodeficiency virus-1 in vitro. This interaction has been mainly attributed to the gp120 V3 loop. However, although evidence suggested that this particular domain does not fully recapitulate the binding activity of the protein, the ability of HS to bind to other regions of gp120 has not been completely addressed, and the exact localizations of the polysaccharide binding sites are not known. To investigate in more detail the structural basis of the HS-gp120 interaction, we used a mapping strategy and compared the heparin binding activity of wild type and mutant gp120 using surface plasmon resonance-based binding assays. Four heparin binding domains (1-4) were identified in the V2 and V3 loops, in the C-terminal domain, and within the CD4-induced bridging sheet. Interestingly, three of them were found in domains of the protein that undergo structural changes upon binding to CD4 and are involved in co-receptor recognition. In particular, Arg(419), Lys(421), and Lys(432), which directly interact with the co-receptor, are targeted by heparin. This study provides a complete account of the gp120 residues involved in heparin binding and identified several binding surfaces that constitute potential target for viral entry inhibition.


Asunto(s)
Antígenos CD4/química , Proteína gp120 de Envoltorio del VIH/química , VIH-1/química , Heparitina Sulfato/química , Animales , Antígenos CD4/genética , Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , VIH-1/patogenicidad , Heparitina Sulfato/metabolismo , Humanos , Mutación/genética , Mapeo Peptídico/métodos , Unión Proteica/genética , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Spodoptera , Resonancia por Plasmón de Superficie/métodos , Internalización del Virus
18.
J Biol Chem ; 279(52): 54327-33, 2004 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-15485868

RESUMEN

The binding of proteins to glycosaminoglycans (GAGs) is the prerequisite for a large number of cellular processes and regulatory events and is associated to many pathologies. However, progress in the understanding of these mechanisms has been hampered by the lack of simple and comprehensive analytical tools for the identification of the structural attributes involved in protein/saccharide interaction. Characterization of GAG binding motifs on proteins has so far relied on site-directed mutagenesis studies, protein sequence mapping using synthetic peptides, molecular modeling, or structural analysis. Here, we report the development of a novel approach for identifying protein residues involved in the binding to heparin, the archetypal member of the GAG family. This method, which uses native proteins, is based on the formation of cross-linked complexes of the protein of interest with heparin beads, the proteolytic digestion of these complexes, and the subsequent identification of the heparin binding containing peptides by N terminus sequencing. Analysis of the CC chemokine regulated on activation, normal T-cell expressed, and secreted (RANTES), the envelope glycoprotein gC from pseudorabies virus and the laminin-5 alpha 3LG4/5 domain validated the techniques and provided novel information on the heparin binding motifs present within these proteins. Our results highlighted this method as a fast and valuable alternative to existing approaches. Application of this technique should greatly contribute to facilitate the structural study of protein/GAG interactions and the understanding of their biological functions.


Asunto(s)
Aminoácidos/análisis , Glicosaminoglicanos/metabolismo , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Sitios de Unión , Línea Celular , Quimiocina CCL5/química , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Reactivos de Enlaces Cruzados , Glicosaminoglicanos/química , Heparina/química , Heparina/metabolismo , Herpesvirus Suido 1/química , Humanos , Laminina/química , Laminina/genética , Laminina/metabolismo , Microesferas , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Recombinantes , Análisis de Secuencia de Proteína , Relación Estructura-Actividad , Transfección , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA