RESUMEN
The Pacific region is of major importance for addressing questions regarding human dispersals, interactions with archaic hominins and natural selection processes1. However, the demographic and adaptive history of Oceanian populations remains largely uncharacterized. Here we report high-coverage genomes of 317 individuals from 20 populations from the Pacific region. We find that the ancestors of Papuan-related ('Near Oceanian') groups underwent a strong bottleneck before the settlement of the region, and separated around 20,000-40,000 years ago. We infer that the East Asian ancestors of Pacific populations may have diverged from Taiwanese Indigenous peoples before the Neolithic expansion, which is thought to have started from Taiwan around 5,000 years ago2-4. Additionally, this dispersal was not followed by an immediate, single admixture event with Near Oceanian populations, but involved recurrent episodes of genetic interactions. Our analyses reveal marked differences in the proportion and nature of Denisovan heritage among Pacific groups, suggesting that independent interbreeding with highly structured archaic populations occurred. Furthermore, whereas introgression of Neanderthal genetic information facilitated the adaptation of modern humans related to multiple phenotypes (for example, metabolism, pigmentation and neuronal development), Denisovan introgression was primarily beneficial for immune-related functions. Finally, we report evidence of selective sweeps and polygenic adaptation associated with pathogen exposure and lipid metabolism in the Pacific region, increasing our understanding of the mechanisms of biological adaptation to island environments.
Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Genética de Población , Genoma Humano/genética , Genómica , Migración Humana/historia , Islas , Nativos de Hawái y Otras Islas del Pacífico/genética , Animales , Australia , Conjuntos de Datos como Asunto , Asia Oriental , Introgresión Genética , Historia Antigua , Humanos , Hombre de Neandertal/genética , Oceanía , Océano Pacífico , TaiwánRESUMEN
Admixture has been a pervasive phenomenon in human history, extensively shaping the patterns of population genetic diversity. There is increasing evidence to suggest that admixture can also facilitate genetic adaptation to local environments, i.e., admixed populations acquire beneficial mutations from source populations, a process that we refer to as "adaptive admixture." However, the role of adaptive admixture in human evolution and the power to detect it remain poorly characterized. Here, we use extensive computer simulations to evaluate the power of several neutrality statistics to detect natural selection in the admixed population, assuming multiple admixture scenarios. We show that statistics based on admixture proportions, Fadm and LAD, show high power to detect mutations that are beneficial in the admixed population, whereas other statistics, including iHS and FST, falsely detect neutral mutations that have been selected in the source populations only. By combining Fadm and LAD into a single, powerful statistic, we scanned the genomes of 15 worldwide, admixed populations for signatures of adaptive admixture. We confirm that lactase persistence and resistance to malaria have been under adaptive admixture in West Africans and in Malagasy, North Africans, and South Asians, respectively. Our approach also uncovers other cases of adaptive admixture, including APOL1 in Fulani nomads and PKN2 in East Indonesians, involved in resistance to infection and metabolism, respectively. Collectively, our study provides evidence that adaptive admixture has occurred in human populations whose genetic history is characterized by periods of isolation and spatial expansions resulting in increased gene flow.
Asunto(s)
Genómica , Selección Genética , Adaptación Fisiológica/genética , Apolipoproteína L1/genética , Población Negra , Flujo Génico , Genética de Población , Humanos , Polimorfismo de Nucleótido SimpleRESUMEN
Despite showing the greatest primate diversity on the planet, genomic studies on Amazonian primates show very little representation in the literature. With 48 geolocalized high coverage whole genomes from wild uakari monkeys, we present the first population-level study on platyrrhines using whole genome data. In a very restricted range of the Amazon rainforest, eight uakari species (Cacajao genus) have been described and categorized into the bald and black uakari groups, based on phenotypic and ecological differences. Despite a slight habitat overlap, we show that posterior to their split 0.92 Mya, bald and black uakaris have remained independent, without gene flow. Nowadays, these two groups present distinct genetic diversity and group-specific variation linked to pathogens. We propose differing hydrology patterns and effectiveness of geographic barriers have modulated the intra-group connectivity and structure of bald and black uakari populations. With this work we have explored the effects of the Amazon rainforest's dynamism on wild primates' genetics and increased the representation of platyrrhine genomes, thus opening the door to future research on the complexity and diversity of primate genomics.
Asunto(s)
Genoma , Animales , Variación Genética , Bosque Lluvioso , Filogenia , Ecosistema , Brasil , Flujo Génico , Platirrinos/genéticaRESUMEN
Archaic admixture has had a substantial impact on human evolution with multiple events across different clades, including from extinct hominins such as Neanderthals and Denisovans into modern humans. In great apes, archaic admixture has been identified in chimpanzees and bonobos but the possibility of such events has not been explored in other species. Here, we address this question using high-coverage whole-genome sequences from all four extant gorilla subspecies, including six newly sequenced eastern gorillas from previously unsampled geographic regions. Using approximate Bayesian computation with neural networks to model the demographic history of gorillas, we find a signature of admixture from an archaic 'ghost' lineage into the common ancestor of eastern gorillas but not western gorillas. We infer that up to 3% of the genome of these individuals is introgressed from an archaic lineage that diverged more than 3 million years ago from the common ancestor of all extant gorillas. This introgression event took place before the split of mountain and eastern lowland gorillas, probably more than 40 thousand years ago and may have influenced perception of bitter taste in eastern gorillas. When comparing the introgression landscapes of gorillas, humans and bonobos, we find a consistent depletion of introgressed fragments on the X chromosome across these species. However, depletion in protein-coding content is not detectable in eastern gorillas, possibly as a consequence of stronger genetic drift in this species.