Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 62(27): 7479-7502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33951954

RESUMEN

Fish and other seafood are important sources of nutrients, but they are also sources of chemical contaminants that may cause adverse health effects. This article aimed to identify existing risk-benefit assessments (RBA) of fish, shellfish, and other seafood, compare methodologies, discuss differences and commonalities in findings, and identify limitations and ways forward for future studies. We conducted a scoping review of the scientific literature of studies in all languages published from 2000 through April 2019. We identified 106 RBA of fish and other seafood across Europe, Asia, North America, Africa, and at the global level. Studies were heterogeneous in terms of types of fish and other seafood considered, beneficial and adverse compounds assessed, and overall methodology. Collected data showed that a diet consisting of a variety of lean and fatty fish and other seafood is recommended for the overall population and that women of childbearing age and children should limit the consumption of fish and other seafood types that have a high likelihood of contamination. Our review emphasizes the need for evidence-based, up-to-date, and harmonized approaches in RBA in general.


Asunto(s)
Contaminación de Alimentos , Contaminantes Químicos del Agua , Animales , Niño , Femenino , Peces , Contaminación de Alimentos/análisis , Humanos , Medición de Riesgo , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/química
2.
Part Fibre Toxicol ; 18(1): 23, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34134756

RESUMEN

BACKGROUND: Widespread use of silver in its different forms raises concerns about potential adverse effects after ingestion, the main exposure route for humans. The aim of this study was to investigate in CD-1 (ICR) male mice the tissue distribution and in vivo effects of 4-week oral exposure to 0.25 and 1 mg Ag/kg bw 10 nm citrate coated silver nanoparticles (AgNPs) and 1 mg Ag/kg bw silver acetate (AgAc) at the end of treatment (EoT) and after 4 weeks of recovery. RESULTS: There were no treatment-related clinical signs and mortality, and no significant effects on body and organ weights at the EoT and after recovery. Treatment-related changes in hematology and clinical chemistry were found after recovery, the most relevant being a dose-dependent lymphopenia and increased triglycerides in AgNP-treated mice, and increased levels of urea in all treated groups, associated with decreased albumin only in AgAc-treated mice. At the EoT the highest silver concentration determined by Triple Quadrupole ICP-MS analysis was found in the brain, followed by testis, liver, and spleen; much lower concentrations were present in the small intestine and kidney. Tissue silver concentrations were slightly higher after exposure to AgAc than AgNPs and dose dependent for AgNPs. After recovery silver was still present in the brain and testis, highlighting slow elimination. No histopathological changes and absence of silver staining by autometallography were observed in the organs of treated mice. At the EoT GFAP (astrocytes) immunoreactivity was significantly increased in the hippocampus of AgNP-treated mice in a dose-dependent manner and Iba1 (microglial cells) immunoreactivity was significantly increased in the cortex of 1 mg/kg bw AgNP-treated mice. After recovery, a significant reduction of Iba1 was observed in the cortex of all treated groups. TEM analysis of the hippocampus revealed splitting of basement membrane of the capillaries and swelling of astrocytic perivascular end-feet in 1 mg/kg bw AgNP- and AgAc-treated mice at the EoT. CONCLUSIONS: Our study revealed accumulation and slow clearance of silver in the brain after oral administration of 10 nm AgNPs and AgAc at low doses in mice, associated with effects on glial cells and ultrastructural alterations of the Blood-Brain Barrier.


Asunto(s)
Nanopartículas del Metal/toxicidad , Plata/toxicidad , Administración Oral , Animales , Encéfalo , Masculino , Ratones , Ratones Endogámicos ICR , Distribución Tisular
3.
Food Control ; 120: 107550, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33536722

RESUMEN

Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed. Special emphasis was placed on the sample preparation procedure, crucial to reproducibly disperse the particles before analysis. The transferability of this method was tested in an interlaboratory comparison study among seven experienced European food control and food research laboratories equipped with various ICP-MS instruments and using different software packages. The assessed measurands included the particle mean diameter, the most frequent diameter, the percentage of particles (in number) with a diameter below 100 nm, the particles' number concentration and a number of cumulative particle size distribution parameters (D0, D10, D50, D99.5, D99.8 and D100). The evaluated method's performance characteristics were, the within-laboratory precision, expressed as the relative repeatability standard deviation (RSDr), and the between-laboratory precision, expressed as the relative reproducibility standard deviation (RSDR). Transmission electron microscopy (TEM) was used as a confirmatory technique and served as the basis for bias estimation. The optimisation of the sample preparation step showed that when this protocol was applied to the relatively simple sample food matrices used in this study, bath sonication turned out to be sufficient to reach the highest, achievable degree of dispersed constituent particles. For the pristine material, probe sonication was required. Repeatability and reproducibility were below 10% and 25% respectively for most measurands except for the lower (D0) and the upper (D100) bound of the particle size distribution and the particle number concentration. The broader distribution of the lower and the upper bounds could be attributed to instrument-specific settings/setups (e.g. the timing parameters, the transport efficiency, type of mass-spectrometer) and software-specific data treatment algorithms. Differences in the upper bound were identified as being due to the non-harmonised application of the upper counting limit. Reporting D99.5 or D99.8 instead of the effectively largest particle diameter (D100) excluded isolated large particles and considerably improved the reproducibility. The particle number-concentration was found to be influenced by small differences in the sample preparation procedure. The comparison of these results with those obtained using electron microscopy showed that the mean and median particle diameter was, in all cases, higher when using spICP-MS. The main reason for this was the higher size detection limit for spICP-MS plus the fact that some of the analysed particles remained agglomerated/aggregated after sonication. Single particle ICP-MS is a powerful screening technique, which in many cases provides sufficient evidence to confirm the need to label a food product as containing (engineered) titanium dioxide nanomaterial according to the current EU regulatory requirements. The overall positive outcome of the method performance evaluation and the current lack of alternative standardised procedures, would indicate this method as being a promising candidate for a full validation study.

4.
Int J Mol Sci ; 21(8)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290408

RESUMEN

Lead (Pb) exposure in early life affects brain development resulting in cognitive and behavioral deficits. Epidemiologic and experimental evidence of sex as an effect modifier of developmental Pb exposure is emerging. In the present study, we investigated Pb effects on behavior and mechanisms of neuroplasticity in the hippocampus and potential sex differences. To this aim, dams were exposed, from one month pre-mating to offspring weaning, to Pb via drinking water at 5 mg/kg body weight per day. In the offspring of both sexes, the longitudinal assessment of motor, emotional, and cognitive end points was performed. We also evaluated the expression and synaptic distribution of N-methyl-D-Aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits at post-natal day (pnd) 23 and 70 in the hippocampus. Neonatal motor patterns and explorative behavior in offspring were affected in both sexes. Pb effects in emotional response and memory retention were observed in adult females only, preceded by increased levels of GluN2A and GluA1 subunits at the post-synapse at pnd 23. These data suggest that Pb exposure during development affects glutamatergic receptors distribution at the post-synaptic spine in females. These effects may contribute to alterations in selected behavioral domains.


Asunto(s)
Discapacidades del Desarrollo/etiología , Susceptibilidad a Enfermedades , Exposición a Riesgos Ambientales/efectos adversos , Plomo/efectos adversos , Trastornos Mentales/etiología , Animales , Conducta Animal , Encéfalo/metabolismo , Discapacidades del Desarrollo/diagnóstico , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Plomo/sangre , Plomo/metabolismo , Masculino , Trastornos Mentales/diagnóstico , Plasticidad Neuronal/efectos de los fármacos , Ratas , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Caracteres Sexuales
5.
Part Fibre Toxicol ; 13: 12, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26926244

RESUMEN

BACKGROUND: Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size and coating on tissue distribution and toxicity of AgNPs after intravenous administration in mice, and compare the results with those obtained after silver acetate administration. METHODS: Male CD-1(ICR) mice were intravenously injected with AgNPs of different sizes (10 nm, 40 nm, 100 nm), citrate-or polyvinylpyrrolidone-coated, at a single dose of 10 mg/kg bw. An equivalent dose of silver ions was administered as silver acetate. Mice were euthanized 24 h after the treatment, and silver quantification by ICP-MS and histopathology were performed on spleen, liver, lungs, kidneys, brain, and blood. RESULTS: For all particle sizes, regardless of their coating, the highest silver concentrations were found in the spleen and liver, followed by lung, kidney, and brain. Silver concentrations were significantly higher in the spleen, lung, kidney, brain, and blood of mice treated with 10 nm AgNPs than those treated with larger particles. Relevant toxic effects (midzonal hepatocellular necrosis, gall bladder hemorrhage) were found in mice treated with 10 nm AgNPs, while in mice treated with 40 nm and 100 nm AgNPs lesions were milder or negligible, respectively. In mice treated with silver acetate, silver concentrations were significantly lower in the spleen and lung, and higher in the kidney than in mice treated with 10 nm AgNPs, and a different target organ of toxicity was identified (kidney). CONCLUSIONS: Administration of the smallest (10 nm) nanoparticles resulted in enhanced silver tissue distribution and overt hepatobiliary toxicity compared to larger ones (40 and 100 nm), while coating had no relevant impact. Distinct patterns of tissue distribution and toxicity were observed after silver acetate administration. It is concluded that if AgNPs become systemically available, they behave differently from ionic silver, exerting distinct and size-dependent effects, strictly related to the nanoparticulate form.


Asunto(s)
Nanopartículas , Plata/farmacocinética , Plata/toxicidad , Acetatos/administración & dosificación , Acetatos/farmacocinética , Acetatos/toxicidad , Animales , Encéfalo/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ácido Cítrico/química , Enfermedades de la Vesícula Biliar/inducido químicamente , Enfermedades de la Vesícula Biliar/patología , Hemorragia/inducido químicamente , Hemorragia/patología , Inyecciones Intravenosas , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Pulmón/metabolismo , Masculino , Ratones Endogámicos ICR , Necrosis , Tamaño de la Partícula , Povidona/química , Medición de Riesgo , Plata/administración & dosificación , Plata/sangre , Plata/química , Compuestos de Plata/administración & dosificación , Compuestos de Plata/farmacocinética , Compuestos de Plata/toxicidad , Bazo/metabolismo , Distribución Tisular
6.
Environ Int ; 184: 108474, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38350256

RESUMEN

Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.


Asunto(s)
Rutas de Resultados Adversos , Modelos Biológicos , Animales , Humanos , Toxicocinética , Monitoreo Biológico , Medición de Riesgo/métodos
7.
EFSA J ; 22(6): e8817, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868108

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on vitamin D2 mushroom powder as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF is produced from Agaricus bisporus mushroom powder that has been exposed to ultraviolet (UV) irradiation to induce the conversion of provitamin D2 (ergosterol) to vitamin D2 (ergocalciferol). The NF contains concentrations of vitamin D in the form of vitamin D2 in the range of 245-460 µg/g. The information provided on the production process, composition and specifications of the NF does not raise safety concerns. The applicant intends to add the NF as an ingredient in a variety of foods and beverages in amounts that result in either 1.2 or 2.4 µg vitamin D2 per 100 g or 100 mL of the food as consumed. The applicant also intends to add the NF in food supplements at a maximum of 15 µg vitamin D2/day for individuals above 1 year of age, as well as in foods for special medical purposes (FSMPs). The estimates for combined intake of vitamin D from the NF, the background diet and fortified foods, were below the ULs for vitamin D as established previously by the NDA Panel for children, adolescents and adults, i.e. 50 and 100 µg/day. The estimated combined vitamin D intake in infants (6-12 months) is also below the UL for vitamin D of 35 µg/day. The Panel considers that taking into account the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous for the proposed target population. The Panel concludes that the NF is safe under the proposed conditions of use.

8.
EFSA J ; 22(7): e8919, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39077636

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on Acheta (A.) domesticus powder as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The main components of the NF are protein, fat and dietary fibre (chitin). The Panel notes that the concentration of contaminants in the NF depends on the occurrence levels of these substances in the insect feed. The Panel further notes that there are no safety concerns regarding the stability of the NF if the NF complies with the proposed specification limits during its entire shelf-life. The NF has a high protein content, although the true protein content is overestimated when using the nitrogen-to-protein conversion factor of 6.25 due to the presence of non-protein nitrogen from chitin. The applicant proposed to use the NF as food ingredient in a number of food products. The target population proposed by the applicant is the general population. Considering the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. The panel notes that no safety concerns arise from the toxicological information of A. domesticus. The panel considers that the consumption of the NF might trigger primary sensitisation to A. domesticus proteins and may cause allergic reactions in subjects allergic to crustaceans, mites and molluscs. Additionally, allergens from the feed may end up in the NF. The panel concludes that the NF is safe under the proposed uses and use levels.

9.
EFSA J ; 22(8): e8911, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119058

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on glucosyl hesperidin (GH) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF, which is produced from hesperidin and dextrin by enzymatic reactions, is a powder consisting mainly of monoglucosyl hesperidin (MGH) and unreacted hesperidin (flavonoid), which account in total for up to 92.8% (on dry basis) of the product. The applicant proposed to use the NF in specific drinks and food supplements leading to a maximum intake of up to 364 mg per day for adults. The target population is the general population, except for food supplements for which the proposed target population is children from 1 year onwards and adults. Taking into consideration the composition of the NF and the proposed uses, the consumption of the NF is not nutritionally disadvantageous. There are no concerns regarding genotoxicity of the NF. Based on a 90-day oral toxicity study conducted with the NF, the Panel considers the NOAEL at the mid-dose group, i.e. ~ 1000 mg/kg body weight (bw) per day. By applying an uncertainty factor of 200, the resulting intake providing sufficient margin of exposure for humans would be 5 mg/kg bw per day. The available human intervention studies did not report clinically relevant changes in haematological or clinical chemistry parameters following the administration of GH/MGH at supplemental doses of up to 3 g/day for 12 weeks. Overall, the Panel considers that the margin of exposure (~ 200) between the intake of the NF at the proposed uses and use levels and the NOAEL from the 90-day study is sufficient. The Panel concludes that the NF, glucosyl hesperidin, is safe for the target population at the proposed uses and use levels.

10.
EFSA J ; 22(1): e8491, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38260771

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on isomaltulose syrup (dried) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF consists of a mixture of mono- and disaccharides in powder form, mainly composed of isomaltulose (≥ 75%) and trehalulose (< 13%). The applicant intends to use the NF as a replacement for sucrose already on the market. The information provided on the manufacturing process, composition and specifications of the NF is sufficient and does not raise safety concerns. No absorption, distribution, metabolism and excretion (ADME) or toxicological data were provided for the NF. Instead, the safety of the NF was assessed based on literature data available on isomaltulose and mixtures of isomaltulose and trehalulose. In addition, considering the nature, compositional characterisation and production process of the NF, the Panel considered that such data were sufficient to conclude that the NF is as safe as sucrose.

11.
EFSA J ; 22(3): e8645, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469361

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on ashitaba sap as a novel food (NF) pursuant to Regulation (EU) 2015/2283. Ashitaba sap is collected from harvested stems of Angelica keiskei plants. The principal constituents of the sap with regard to the safety assessment are chalcones (1%-2.25%) and furanocoumarins (< 0.01%). The applicant proposed to use the NF in food supplements at a maximum dose of 780 mg per day. The target population is adults excluding pregnant and lactating women. Taking into consideration the composition of the NF and the proposed uses, the composition of the NF is not nutritionally disadvantageous. There are no concerns regarding genotoxicity of the NF. Based on a 90-day oral toxicity study performed with the product as intended to be placed on the market (30% ashitaba sap powder and 70% cyclodextrins), the Panel establishes a safe dose of 0.5 mg/kg body weight (bw) per day for the product as it is intended to be placed on the market. For the target population, i.e. adults, this safe dose corresponds to 35 mg per day of the product as it is intended to be placed on the market and 137 mg per day of the NF, which is lower than the use level proposed by the applicant. The Panel concludes that the NF is safe for the target population at intake levels up to 137 mg per day.

12.
EFSA J ; 22(3): e8656, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481468

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of magnesium l-threonate as a novel food (NF) pursuant to Regulation (EU) 2015/2283 and to address the bioavailability of magnesium from this source in the context of Directive 2002/46/EC. The NF, produced by chemical synthesis, is intended to be used as new source for magnesium in food supplements at a maximum intake level of 3000 mg per day by adults, except for pregnant and lactating women. This dose corresponds to ~ 2730 mg l-threonate and 250 mg magnesium, which also corresponds to the UL for supplemental magnesium from readily dissociable magnesium salts. Based on results obtained from a dissociation study, two rat studies and one human trial, the Panel considers that magnesium is bioavailable from the NF. The NF may contain up to 1% oxalic acid. The Panel considers that an additional exposure to oxalic acid, that is up to 30 mg daily from the NF, is not to be of safety concern. The Panel concludes that the NF is not nutritionally disadvantageous. In 2008, the EFSA ANS Panel concluded that a human intake of l-threonate of 2700 mg per day is safe. This intake is similar to the maximum intake of l-threonate from the NF under the maximum proposed uses, and the NDA Panel concurs with the ANS Panel that this intake is safe. The Panel considers that there are no concerns regarding the genotoxicity of the NF. The Panel concludes that the NF, Mg l-threonate, is safe under the proposed conditions of use. The Panel concludes that the NF is a source from which magnesium is bioavailable.

13.
EFSA J ; 22(2): e8543, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38322231

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the extension of use of isomalto-oligosaccharide (IMO) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF consists of glucose oligomers with degrees of polymerisation of 3-9, along with various amounts of mono- and disaccharides. The NF comes in both syrup and powder form. The applicant intends to extend the current uses of the NF as an ingredient in several foods, and use the NF in food supplements aimed at the general population older than 10 years of age. The information provided on the manufacturing process, composition and specifications of the NF is sufficient and does not raise safety concerns. Along with literature data, the applicant carried out a tolerability study in adult volunteers with the NF at doses up to 120 g/day. The Panel concludes that this study provides reassurance that the NF is tolerable at doses of 120 g/day. Conservative intake estimates resulting from the use of the NF as an ingredient according to the currently authorised uses and new proposed uses result in a highest intake estimate in adolescents of 112 g/day at the 95th percentile, and reach 142 g/day in adolescents when the use as a food supplement is included. The Panel notes this amount is higher than the dose of 120 g/day for which tolerability has been demonstrated. However, considering the source, compositional characterisation, production process and nature of the NF, as well as the available nutritional and toxicological data on the NF, the Panel considers that the NF does not present safety concerns under the proposed conditions of use.

14.
EFSA J ; 22(1): e8492, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269034

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on HelixComplex Snail Mucus (HSM) as a novel food (NF) pursuant to Regulation (EU) 2015/2283. The NF consists of snail mucus collected from Helix aspersa maxima and is proposed to be used by adults as a food supplement. The data provided by the applicant about the composition and stability of the NF together with the report of the subchronic toxicity study were overall considered unsatisfactory. The Panel noted inconsistencies in the reporting of the certificates of analysis and of the data on the subchronic toxicity provided by the applicant. Owing to these deficiencies, the Panel cannot establish a safe intake level of the NF. The Panel concludes that the safety of the NF has not been established.

15.
Nanomaterials (Basel) ; 13(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999311

RESUMEN

A method was developed for the determination of total titanium in food and food supplements by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted acid digestion of samples. Five food supplements, including one certified reference material, and 15 food products were used for method development. Key factors affecting the analytical results, such as the composition of the acid mixture for sample digestion and the bias from spectral interferences on the different titanium isotopes, were investigated. Resolution of interferences was achieved by ICP-MS/MS with ammonia adduct formation and viable conditions for control laboratories equipped with standard quadrupole instruments were identified. The method was successfully validated and enables rapid screening of samples subject to confirmatory analysis for the presence of TiO2 particles. For the latter, single-particle ICP-MS (spICP-MS) analysis after chemical extraction of the particles was used. The two methods establish a viable analytical strategy for assessing the absence of titania particles in food products on the EU market following the E 171 ban as a food additive.

16.
Nanomaterials (Basel) ; 13(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37446425

RESUMEN

In the present study, we addressed the knowledge gaps regarding the agglomeration behavior and fate of food-grade titanium dioxide (E 171) in human gastrointestinal digestion (GID). After thorough multi-technique physicochemical characterization including TEM, single-particle ICP-MS (spICP-MS), CLS, VSSA determination and ELS, the GI fate of E 171 was studied by applying the in vitro GID approach established for the regulatory risk assessment of nanomaterials in Europe, using a standardized international protocol. GI fate was investigated in fasted conditions, relevant to E 171 use in food supplements and medicines, and in fed conditions, with both a model food and E 171-containing food samples. TiO2 constituent particles were resistant to GI dissolution, and thus, their stability in lysosomal fluid was investigated. The biopersistence of the material in lysosomal fluid highlighted its potential for bioaccumulation. For characterizing the agglomeration degree in the small intestinal phase, spICP-MS represented an ideal analytical tool to overcome the limitations of earlier studies. We demonstrated that, after simulated GID, in the small intestine, E 171 (at concentrations reflecting human exposure) is present with a dispersion degree similar to that obtained when dispersing the material in water by means of high-energy sonication (i.e., ≥70% of particles <250 nm).

17.
EFSA J ; 21(5): e07995, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37251502

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on paramylon as a novel food (NF) pursuant to Regulation (EU) 2015/2283. Paramylon is a linear, unbranched beta-1,3-ᴅ-glucan polymer that is isolated from the single-cell microalga Euglena gracilis. The NF consists of at least 95% beta-glucan and minor amounts of protein, fat, ash and moisture. The applicant proposed to use the NF in food supplements, as a food ingredient added to a number of food categories and in foods for total diet replacement for weight control. In 2019, E. gracilis was attributed the qualified presumption of safety (QPS) status with the qualification 'for production purposes only', which includes food products based on microbial biomass of the microalga. Based on the information provided, E. gracilis is not expected to survive the manufacturing process. The submitted toxicity studies did not raise safety concerns. No adverse effects were observed in the subchronic toxicity studies, up to the highest dose tested, i.e. 5,000 mg NF/kg body weight per day. In view of the QPS status of the source of the NF, supported by the manufacturing process, compositional data and lack of toxicity observed in the toxicity studies, the Panel has no safety concerns and concludes that the NF, i.e. paramylon, is safe under the proposed uses and use levels.

18.
EFSA J ; 21(7): e08065, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37492501

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of an apple fruit cell culture biomass as a novel food (NF) pursuant to Regulation (EU) 2015/2283 and intended as an ingredient for food supplements in adults. The cells have been sourced from the callus grown on a piece of apple placed on a solid medium under sterile conditions. The de-differentiated apple cells are then cultivated in liquid medium. The medium contains sucrose, vitamins, minerals, trace elements and the two synthetic plant hormone analogues, benzylaminopurine (< 0.1 mg/kg) and 2,4-dichlorophenoxyacetic acid (< 0.25 mg/kg). These plant hormones are regulated under the EU pesticide legislation and their residue levels in the NF are in compliance with the EU maximum residue levels. The main components of the NF are carbohydrates (including sugars and non-digestible carbohydrates), ash, proteins and smaller amounts of fatty acids and organic acids. Except for the amount of total fat and the organic acids (succinic and l-malic acid), the quantities of the compositional parameters of the NF and apple have little in common. The Panel considers that a provided subchronic toxicity study was not needed to establish the safety of this NF, when taking into account the source of the NF, i.e. apples, the production process, the low intended use level and the composition of the NF, despite the noted differences to apple. The Panel considers that the NF contains proteins, which were not detected in apple and which may be allergenic. The Panel concludes that the NF, an apple fruit cell culture biomass, is safe under the proposed conditions of use.

19.
EFSA J ; 21(12): e8414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38075633

RESUMEN

Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of Schizochytrium sp. (TKD-1) oil as a novel food (NF) pursuant to Regulation (EU) 2015/2283. Schizochytrium sp. is a single-cell microalga. The strain TKD-1, used by the applicant (ATK Biotech Co. Ltd.), belongs to the species Schizochytrium limacinum. The NF is a mixture of triglycerides in which docosahexaenoic acid (DHA) represents 53%-61% of fatty acids. The applicant proposed to use the NF in infant formulae (IF) and follow-on formulae (FOF). The use levels proposed by the applicant were derived from Regulation (EU) 2016/127, which states the mandatory addition of DHA to IF and FOF at the level of 20-50 mg/100 kcal. S. limacinum was attributed the qualified presumption of safety (QPS) status with the qualification 'for production purposes only'. Data provided by the applicant demonstrated the absence of viable cells in the NF. No toxicological studies were performed with the NF. However, based on the available toxicological data on oils derived from Schizochytrium sp., the QPS status of the source of the NF, the production process, the composition of the NF and the absence of marine biotoxins and viable cells in the NF, the Panel considers there are no concerns with regard to toxicity of the NF. The Panel concludes that the NF is safe under the proposed conditions of use.

20.
EFSA J ; 21(12): e8413, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38075631

RESUMEN

Following a request from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for manganese. Systematic reviews of the literature of human and animal data were conducted to assess evidence regarding excess manganese intake (including authorised manganese salts) and the priority adverse health effect, i.e. manganese-induced neurotoxicity. Available human and animal studies support neurotoxicity as a critical effect, however, data are not sufficient and suitable to characterise a dose-response relationship and identify a reference point for manganese-induced neurotoxicity. In the absence of adequate data to establish an UL, estimated background dietary intakes (i.e. manganese intakes from natural dietary sources only) observed among high consumers (95th percentile) were used to provide an indication of the highest level of intake where there is reasonable confidence on the absence of adverse effects. A safe level of intake of 8 mg/day was established for adults ≥ 18 years (including pregnant and lactating women) and ranged between 2 and 7 mg/day for other population groups. The application of the safe level of intake is more limited than an UL because the intake level at which the risk of adverse effects starts to increase is not defined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA