Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107156, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479601

RESUMEN

Mechanically activated Piezo1 channels undergo transitions from closed to open-state in response to pressure and other mechanical stimuli. However, the molecular details of these mechanosensitive gating transitions are unknown. Here, we used cell-attached pressure-clamp recordings to acquire single channel data at steady-state conditions (where inactivation has settled down), at various pressures and voltages. Importantly, we identify and analyze subconductance states of the channel which were not reported before. Pressure-dependent activation of Piezo1 increases the occupancy of open and subconductance state at the expense of decreased occupancy of shut-states. No significant change in the mean open time of subconductance states was observed with increasing negative pipette pressure or with varying voltages (ranging from -40 to -100 mV). Using Markov-chain modeling, we identified a minimal four-states kinetic scheme, which recapitulates essential characteristics of the single channel data, including that of the subconductance level. This study advances our understanding of Piezo1-gating mechanism in response to discrete stimuli (such as pressure and voltage) and paves the path to develop cellular and tissue level models to predict Piezo1 function in various cell types.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos , Mecanotransducción Celular , Presión , Humanos , Células HEK293 , Activación del Canal Iónico/fisiología , Canales Iónicos/metabolismo , Cinética , Cadenas de Markov
2.
Proc Natl Acad Sci U S A ; 116(34): 16829-16834, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31387976

RESUMEN

Here, we present the atomic resolution crystallographic structure, the function, and the ion-binding properties of the KcsA mutants, G77A and G77C, that stabilize the 2,4-ion-bound configuration (i.e., water, K+, water, K+-ion-bound configuration) of the K+ channel's selectivity filter. A full functional and thermodynamic characterization of the G77A mutant revealed wild-type-like ion selectivity and apparent K+-binding affinity, in addition to showing a lack of C-type inactivation gating and a marked reduction in its single-channel conductance. These structures validate, from a structural point of view, the notion that 2 isoenergetic ion-bound configurations coexist within a K+ channel's selectivity filter, which fully agrees with the water-K+-ion-coupled transport detected by streaming potential measurements.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Permeabilidad de la Membrana Celular , Cristalografía por Rayos X , Activación del Canal Iónico , Iones , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformación Proteica , Estabilidad Proteica
3.
Nat Chem Biol ; 15(12): 1156-1164, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31591563

RESUMEN

Phospholipids are key components of cellular membranes and are emerging as important functional regulators of different membrane proteins, including pentameric ligand-gated ion channels (pLGICs). Here, we take advantage of the prokaryote channel ELIC (Erwinia ligand-gated ion channel) as a model to understand the determinants of phospholipid interactions in this family of receptors. A high-resolution structure of ELIC in a lipid-bound state reveals a phospholipid site at the lower half of pore-forming transmembrane helices M1 and M4 and at a nearby site for neurosteroids, cholesterol or general anesthetics. This site is shaped by an M4-helix kink and a Trp-Arg-Pro triad that is highly conserved in eukaryote GABAA/C and glycine receptors. A combined approach reveals that M4 is intrinsically flexible and that M4 deletions or disruptions of the lipid-binding site accelerate desensitization in ELIC, suggesting that lipid interactions shape the agonist response. Our data offer a structural context for understanding lipid modulation in pLGICs.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/metabolismo , Lípidos/química , Animales , Ligandos , Mutagénesis , Xenopus
4.
FASEB J ; 34(7): 8902-8919, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32519783

RESUMEN

TOKs are outwardly rectifying K+ channels in fungi with two pore-loops and eight transmembrane spans. Here, we describe the TOKs from four pathogens that cause the majority of life-threatening fungal infections in humans. These TOKs pass large currents only in the outward direction like the canonical isolate from Saccharomyces cerevisiae (ScTOK), and distinct from other K+ channels. ScTOK, AfTOK1 (Aspergillus fumigatus), and H99TOK (Cryptococcus neoformans grubii) are K+ -selective and pass current above the K+ reversal potential. CaTOK (Candida albicans) and CnTOK (Cryptococcus neoformans neoformans) pass both K+ and Na+ and conduct above a reversal potential reflecting the mixed permeability of their selectivity filter. Mutations in CaTOK and ScTOK at sites homologous to those that open the internal gates in classical K+ channels are shown to produce inward TOK currents. A favored model for outward rectification is proposed whereby the reversal potential determines ion occupancy, and thus, conductivity, of the selectivity filter gate that is coupled to an imperfectly restrictive internal gate, permitting the filter to sample ion concentrations on both sides of the membrane.


Asunto(s)
Conductividad Eléctrica , Activación del Canal Iónico/fisiología , Oocitos/fisiología , Canales de Potasio/fisiología , Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Clonación Molecular , Biología Computacional , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/metabolismo , Potenciales de la Membrana , Oocitos/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia , Xenopus laevis
5.
Proc Natl Acad Sci U S A ; 115(21): 5426-5431, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735651

RESUMEN

The selectivity filter and the activation gate in potassium channels are functionally and structurally coupled. An allosteric coupling underlies C-type inactivation coupled to activation gating in this ion-channel family (i.e., opening of the activation gate triggers the collapse of the channel's selectivity filter). We have identified the second Threonine residue within the TTVGYGD signature sequence of K+ channels as a crucial residue for this allosteric communication. A Threonine to Alanine substitution at this position was studied in three representative members of the K+-channel family. Interestingly, all of the mutant channels exhibited lack of C-type inactivation gating and an inversion of their allosteric coupling (i.e., closing of the activation gate collapses the channel's selectivity filter). A state-dependent crystallographic study of KcsA-T75A proves that, on activation, the selectivity filter transitions from a nonconductive and deep C-type inactivated conformation to a conductive one. Finally, we provide a crystallographic demonstration that closed-state inactivation can be achieved by the structural collapse of the channel's selectivity filter.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Potasio/química , Canales de Potasio/metabolismo , Potasio/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Canales de Potasio/genética , Conformación Proteica , Treonina/química , Treonina/genética , Treonina/metabolismo
6.
Biophys J ; 118(10): 2612-2620, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32365329

RESUMEN

Voltage-gated potassium (Kv) channels display several types of inactivation processes, including N-, C-, and U-types. C-type inactivation is attributed to a nonconductive conformation of the selectivity filter (SF). It has been proposed that the activation gate and the channel's SF are allosterically coupled because the conformational changes of the former affect the structure of the latter and vice versa. The second threonine of the SF signature sequence (e.g., TTVGYG) has been proven to be essential for this allosteric coupling. To further study the role of the SF in U-type inactivation, we substituted the second threonine of the TTVGYG sequence by an alanine in the hKv2.1 and hKv3.1 channels, which are known to display U-type inactivation. Both hKv2.1-T377A and hKv3.1-T400A yielded channels that were resistant to inactivation, and as a result, they displayed noninactivating currents upon channel opening; i.e., hKv2.1-T377A and hKv3.1-T400A remained fully conductive upon prolonged moderate depolarizations, whereas in wild-type hKv2.1 and hKv3.1, the current amplitude typically reduces because of U-type inactivation. Interestingly, increasing the extracellular K+ concentration increased the macroscopic current amplitude of both hKv2.1-T377A and hKv3.1-T400A, which is similar to the response of the homologous T to A mutation in Shaker and hKv1.5 channels that display C-type inactivation. Our data support an important role for the second threonine of the SF signature sequence in the U-type inactivation gating of hKv2.1 and hKv3.1.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Canales de Potasio , Activación del Canal Iónico , Potasio/metabolismo , Bloqueadores de los Canales de Potasio , Canales de Potasio/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(12): 3234-3239, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28265056

RESUMEN

Mode-shift or hysteresis has been reported in ion channels. Voltage-shift for gating currents is well documented for voltage-gated cation channels (VGCC), and it is considered a voltage-sensing domain's (VSD) intrinsic property. However, uncoupling the Shaker K+ channel's pore domain (PD) from the VSD prevented the mode-shift of the gating currents. Consequently, it was proposed that an open-state stabilization of the PD imposes a mechanical load on the VSD, which causes its mode-shift. Furthermore, the mode-shift displayed by hyperpolarization-gated cation channels is likely caused by structural changes at the channel's PD similar to those underlying C-type inactivation. To demonstrate that the PD of VGCC undergoes hysteresis, it is imperative to study its gating process in the absence of the VSD. A back-door strategy is to use KcsA (a K+ channel from the bacteria Streptomyces lividans) as a surrogate because it lacks a VSD and exhibits an activation coupled to C-type inactivation. By directly measuring KcsA's activation gate opening and closing in conditions that promote or halt C-type inactivation, we have found (i) that KcsA undergoes mode-shift of gating when having K+ as the permeant ion; (ii) that Cs+ or Rb+, known to halt C-inactivation, prevented mode-shift of gating; and (iii) that, in the total absence of C-type inactivation, KcsA's mode-shift was prevented. Finally, our results demonstrate that an allosteric communication causes KcsA's activation gate to "remember" the conformation of the selectivity filter, and hence KcsA requires a different amount of energy for opening than for closing.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Activación del Canal Iónico , Canales de Potasio/química , Canales de Potasio/metabolismo , Conformación Proteica , Proteínas Bacterianas/genética , Cesio/química , Iones Pesados , Cinética , Potenciales de la Membrana , Modelos Moleculares , Mutación , Canales de Potasio/genética , Rubidio/química , Relación Estructura-Actividad
8.
Proc Natl Acad Sci U S A ; 112(50): E7013-21, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26627718

RESUMEN

Peptide neurotoxins are powerful tools for research, diagnosis, and treatment of disease. Limiting broader use, most receptors lack an identified toxin that binds with high affinity and specificity. This paper describes isolation of toxins for one such orphan target, KcsA, a potassium channel that has been fundamental to delineating the structural basis for ion channel function. A phage-display strategy is presented whereby ∼1.5 million novel and natural peptides are fabricated on the scaffold present in ShK, a sea anemone type I (SAK1) toxin stabilized by three disulfide bonds. We describe two toxins selected by sorting on purified KcsA, one novel (Hui1, 34 residues) and one natural (HmK, 35 residues). Hui1 is potent, blocking single KcsA channels in planar lipid bilayers half-maximally (Ki) at 1 nM. Hui1 is also specific, inhibiting KcsA-Shaker channels in Xenopus oocytes with a Ki of 0.5 nM whereas Shaker, Kv1.2, and Kv1.3 channels are blocked over 200-fold less well. HmK is potent but promiscuous, blocking KcsA-Shaker, Shaker, Kv1.2, and Kv1.3 channels with Ki of 1-4 nM. As anticipated, one Hui1 blocks the KcsA pore and two conserved toxin residues, Lys21 and Tyr22, are essential for high-affinity binding. Unexpectedly, potassium ions traversing the channel from the inside confer voltage sensitivity to the Hui1 off-rate via Arg23, indicating that Lys21 is not in the pore. The 3D structure of Hui1 reveals a SAK1 fold, rationalizes KcsA inhibition, and validates the scaffold-based approach for isolation of high-affinity toxins for orphan receptors.


Asunto(s)
Bacteriófagos/genética , Neurotoxinas/farmacología , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Neurotoxinas/química , Péptidos/química , Homología de Secuencia de Aminoácido
9.
Protein Expr Purif ; 133: 177-186, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28279818

RESUMEN

The Erwinia chrysanthemi ligand-gated ion channel, ELIC, is considered an excellent structural and functional surrogate for the whole pentameric ligand-gated ion channel family. Despite its simplicity, ELIC is structurally capable of undergoing ligand-dependent activation and a concomitant desensitization process. To determine at the molecular level the structural changes underlying ELIC's function, it is desirable to produce large quantities of protein. This protein should be properly folded, fully-functional and amenable to structural determinations. In the current paper, we report a completely new protocol for the expression and purification of milligram quantities of fully-functional, more stable and crystallizable ELIC. The use of an autoinduction media and inexpensive detergents during ELIC extraction, in addition to the high-quality and large quantity of the purified channel, are the highlights of this improved biochemical protocol.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Dickeya chrysanthemi/química , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/aislamiento & purificación
10.
Molecules ; 22(12)2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29186829

RESUMEN

In addition to gap junctional channels that mediate cell-to-cell communication, connexins form hemichannels that are present at the plasma membrane. Since hemichannels are permeable to small hydrophilic compounds, including metabolites and signaling molecules, their abnormal opening can cause or contribute to cell damage in disorders such as cardiac infarct, stroke, deafness, skin diseases, and cataracts. Therefore, hemichannels are potential pharmacological targets. A few aminoglycosides, well-known broad-spectrum antibiotics, have been shown to inhibit hemichannels. Here, we tested several commercially available aminoglycosides for inhibition of human connexin hemichannels using a cell-based bacterial growth complementation assay that we developed recently. We found that kanamycin A, kanamycin B, geneticin, neomycin, and paromomycin are effective inhibitors of hemichannels formed by connexins 26, 43, and 46 (Cx26, Cx43, and Cx46). Because of the >70 years of clinical experience with aminoglycosides and the fact that several of the aminoglycosides tested here have been used in humans, they are promising starting points for the development of effective connexin hemichannel inhibitors.


Asunto(s)
Aminoglicósidos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética , Conexinas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Aminoglicósidos/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Isoformas de Proteínas
11.
Yale J Biol Med ; 90(1): 87-95, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28356896

RESUMEN

Activation of connexin hemichannels is involved in the pathophysiology of disorders that include deafness, stroke, and cardiac infarct. This aspect makes hemichannels an attractive therapeutic target. Unfortunately, most available inhibitors are not selective or isoform specific, which hampers their translational application. The absence of a battery of useful inhibitors is due in part to the absence of simple screening assays for the discovery of hemichannel-active drugs. Here, we present an assay that we have recently developed to assess hemichannel function. The assay is based on the expression of functional human connexins in a genetically modified bacterial strain deficient in K+ uptake. These modified cells do not grow in low-K+ medium, but functional expression of connexin hemichannels allows K+ uptake and growth. This cell-growth-based assay is simple, robust, and easily scalable to high-throughput multi-well platforms.


Asunto(s)
Bioensayo/métodos , Animales , Conexinas/metabolismo , Humanos , Potasio/metabolismo , Isoformas de Proteínas/metabolismo
12.
Protein Expr Purif ; 127: 53-60, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27393071

RESUMEN

KcsA, the bacterial K(+) channel from Streptomyces lividans, is the prototypical model system to study the functional and structural correlations of the pore domain of eukaryotic voltage-gated K(+) channels (Kv channels). It contains all the molecular elements responsible for ion conduction, activation, deactivation and inactivation gating [1]. KcsA's structural simplicity makes it highly amenable for structural studies. Therefore, it is methodological advantageous to produce large amounts of functional and properly folded KcsA in a cost-effective manner. In the present study, we show an optimized protocol for the over-expression and purification of large amounts of high-quality, fully functional and crystallizable KcsA using inexpensive detergents, which significantly lowered the cost of the purification process.


Asunto(s)
Proteínas Bacterianas , Expresión Génica , Canales de Potasio , Streptomyces lividans/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Canales de Potasio/biosíntesis , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Streptomyces lividans/metabolismo
13.
Nature ; 466(7303): 203-8, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20613835

RESUMEN

Interconversion between conductive and non-conductive forms of the K(+) channel selectivity filter underlies a variety of gating events, from flicker transitions (at the microsecond timescale) to C-type inactivation (millisecond to second timescale). Here we report the crystal structure of the Streptomyces lividans K(+) channel KcsA in its open-inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels 'trapped' in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 A in closed KcsA (Calpha-Calpha distances at Thr 112) to 32 A when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures indicate a molecular basis for C-type inactivation in K(+) channels.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Activación del Canal Iónico , Canales de Potasio/química , Streptomyces lividans/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Electrones , Cinética , Modelos Biológicos , Modelos Moleculares , Potasio/metabolismo , Canales de Potasio/metabolismo , Conformación Proteica , Relación Estructura-Actividad
14.
Nature ; 466(7303): 272-5, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20613845

RESUMEN

The coupled interplay between activation and inactivation gating is a functional hallmark of K(+) channels. This coupling has been experimentally demonstrated through ion interaction effects and cysteine accessibility, and is associated with a well defined boundary of energetically coupled residues. The structure of the K(+) channel KcsA in its fully open conformation, in addition to four other partial channel openings, richly illustrates the structural basis of activation-inactivation gating. Here, we identify the mechanistic principles by which movements on the inner bundle gate trigger conformational changes at the selectivity filter, leading to the non-conductive C-type inactivated state. Analysis of a series of KcsA open structures suggests that, as a consequence of the hinge-bending and rotation of the TM2 helix, the aromatic ring of Phe 103 tilts towards residues Thr 74 and Thr 75 in the pore-helix and towards Ile 100 in the neighbouring subunit. This allows the network of hydrogen bonds among residues Trp 67, Glu 71 and Asp 80 to destabilize the selectivity filter, allowing entry to its non-conductive conformation. Mutations at position 103 have a size-dependent effect on gating kinetics: small side-chain substitutions F103A and F103C severely impair inactivation kinetics, whereas larger side chains such as F103W have more subtle effects. This suggests that the allosteric coupling between the inner helical bundle and the selectivity filter might rely on straightforward mechanical deformation propagated through a network of steric contacts. Average interactions calculated from molecular dynamics simulations show favourable open-state interaction-energies between Phe 103 and the surrounding residues. We probed similar interactions in the Shaker K(+) channel where inactivation was impaired in the mutant I470A. We propose that side-chain rearrangements at position 103 mechanically couple activation and inactivation in KcsA and a variety of other K(+) channels.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Activación del Canal Iónico , Canales de Potasio/química , Canales de Potasio/metabolismo , Streptomyces lividans/química , Regulación Alostérica , Proteínas Bacterianas/genética , Cisteína/genética , Cisteína/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Fenilalanina/metabolismo , Canales de Potasio/genética , Conformación Proteica , Canales de Potasio de la Superfamilia Shaker/química , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo , Relación Estructura-Actividad
15.
Proc Natl Acad Sci U S A ; 110(46): 18716-21, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24167270

RESUMEN

Cryoelectron microscopy and X-ray crystallography have recently been used to generate structural models that likely represent the unliganded closed-channel conformation and the fully liganded open-channel conformation of different members of the nicotinic-receptor superfamily. To characterize the structure of the closed-channel conformation in its liganded state, we identified a number of positions in the loop between transmembrane segments 2 (M2) and 3 (M3) of a proton-gated ortholog from the bacterium Gloeobacter violaceus (GLIC) where mutations to alanine reduce the liganded-gating equilibrium constant, and solved the crystal structures of two such mutants (T25'A and Y27'A) at pH ~4.0. At the level of backbone atoms, the liganded closed-channel model presented here differs from the liganded open-channel structure of GLIC in the pre-M1 linker, the M3-M4 loop, and much more prominently, in the extracellular half of the pore lining, where the more pronounced tilt of the closed-channel M2 α-helices toward the pore's long axis narrows the permeation pathway. On the other hand, no differences between the liganded closed-channel and open-channel models could be detected at the level of the extracellular domain, where conformational changes are expected to underlie the low-to-high proton-affinity switch that drives gating of proton-bound channels. Thus, the liganded closed-channel model is nearly indistinguishable from the recently described "locally closed" structure. However, because cross-linking strategies (which could have stabilized unstable conformations) and mutations involving ionizable side chains (which could have affected proton-gated channel activation) were purposely avoided, we favor the notion that this structure represents one of the end states of liganded gating rather than an unstable intermediate.


Asunto(s)
Canales Iónicos Sensibles al Ácido/química , Cianobacterias/química , Activación del Canal Iónico/fisiología , Modelos Moleculares , Conformación Proteica , Canales Iónicos Sensibles al Ácido/genética , Canales Iónicos Sensibles al Ácido/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Mutagénesis , Técnicas de Placa-Clamp
16.
Pharmacol Res ; 101: 56-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26305431

RESUMEN

Voltage-gated ion channels are the molecular determinants of cellular excitability. This group of ion channels is one of the most important pharmacological targets in excitable tissues such as nervous system, cardiac and skeletal muscle. Moreover, voltage-gated ion channels are expressed in non-excitable cells, where they mediate key cellular functions through intracellular biochemical mechanisms rather than rapid electrical signaling. This review aims at illustrating the pharmacological impact of these ion channels, highlighting in particular the structural details and physiological functions of two of them - the high conductance voltage- and Ca(2+)-gated K(+) (BK) channels and voltage-gated proton (Hv1) channels- in non-excitable cells. BK channels have been implicated in a variety of physiological processes ranging from regulation of smooth muscle tone to modulation of hormone and neurotransmitter release. Interestingly, BK channels are also involved in modulating K(+) transport in the mammalian kidney and colon epithelium with a potential role in the hyperkalemic phenotype observed in patients with familial hyperkalemic hypertension type 2, and in the pathophysiology of hypertension. In addition, BK channels are responsible for resting and stimulated Ca(2+)-activated K(+) secretion in the distal colon. Hv1 channels have been detected in many cell types, including macrophages, blood cells, lung epithelia, skeletal muscle and microglia. These channels have a central role in the phagocytic system. In macrophages, Hv1 channels participate in the generation of reactive oxygen species in the respiratory burst during the process of phagocytosis.


Asunto(s)
Canales Iónicos/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Quimioterapia , Humanos , Canales Iónicos/química , Canales Iónicos/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Modelos Biológicos , Modelos Moleculares , Terapia Molecular Dirigida
17.
Biochemistry ; 53(10): 1627-36, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24490868

RESUMEN

In contrast to the majority of voltage-gated ion channels, hyperpolarization-activated channels remain closed at depolarizing potentials and are activated at hyperpolarizing potentials. The basis for this reverse polarity is thought to be a result of differences in the way the voltage-sensing domain (VSD) couples to the pore domain. In the absence of structural data, the molecular mechanism of this reverse polarity coupling remains poorly characterized. Here we report the characterization of the structure and local dynamics of the closed activation gate (lower S6 region) of MVP, a hyperpolarization-activated potassium channel from Methanococcus jannaschii, by electron paramagnetic resonance (EPR) spectroscopy. We show that a codon-optimized version of MVP has high expression levels in Escherichia coli, is purified as a stable tetramer, and exhibits expected voltage-dependent activity when reconstituted in liposomes. EPR analysis of the mid to lower S6 region revealed positions exhibiting strong spin-spin coupling, indicating that the activation gate of MVP is closed at 0 mV. A comparison of local environmental parameters along the activation gate for MVP and KcsA indicates that MVP adopts a different closed conformation. These structural details set the stage for future evaluations of reverse electromechanical coupling in MVP.


Asunto(s)
Proteínas Arqueales/química , Methanocaldococcus/metabolismo , Canales de Potasio/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Cinética , Methanocaldococcus/química , Methanocaldococcus/genética , Canales de Potasio/genética , Canales de Potasio/metabolismo , Estructura Secundaria de Proteína
18.
Proc Natl Acad Sci U S A ; 108(29): 11896-9, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21730186

RESUMEN

Using a constitutively active channel mutant, we solved the structure of full-length KcsA in the open conformation at 3.9 Å. The structure reveals that the activation gate expands about 20 Å, exerting a strain on the bulge helices in the C-terminal domain and generating side windows large enough to accommodate hydrated K(+) ions. Functional and spectroscopic analysis of the gating transition provides direct insight into the allosteric coupling between the activation gate and the selectivity filter. We show that the movement of the inner gate helix is transmitted to the C-terminus as a straightforward expansion, leading to an upward movement and the insertion of the top third of the bulge helix into the membrane. We suggest that by limiting the extent to which the inner gate can open, the cytoplasmic domain also modulates the level of inactivation occurring at the selectivity filter.


Asunto(s)
Proteínas Bacterianas/química , Activación del Canal Iónico/fisiología , Modelos Moleculares , Canales de Potasio/química , Conformación Proteica , Proteínas Bacterianas/genética , Cristalografía , Espectroscopía de Resonancia por Spin del Electrón , Mutación/genética , Canales de Potasio/genética
19.
Proc Natl Acad Sci U S A ; 106(52): 22211-6, 2009 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-20007782

RESUMEN

Venomous animals immobilize prey using protein toxins that act on ion channels and other targets of biological importance. Broad use of toxins for biomedical research, diagnosis, and therapy has been limited by inadequate target discrimination, for example, among ion channel subtypes. Here, a synthetic toxin is produced by a new strategy to be specific for human Kv1.3 channels, critical regulators of immune T cells. A phage display library of 11,200 de novo proteins is designed using the alpha-KTx scaffold of 31 scorpion toxin sequences known or predicted to bind to potassium channels. Mokatoxin-1 (moka1) is isolated by affinity selection on purified target. Moka1 blocks Kv1.3 at nanomolar levels that do not inhibit Kv1.1, Kv1.2, or KCa1.1. As a result, moka1 suppresses CD3/28-induced cytokine secretion by T cells without cross-reactive gastrointestinal hyperactivity. The 3D structure of moka1 rationalizes its specificity and validates the engineering approach, revealing a unique interaction surface supported on an alpha-KTx scaffold. This scaffold-based/target-biased strategy overcomes many obstacles to production of selective toxins.


Asunto(s)
Canal de Potasio Kv1.3/antagonistas & inhibidores , Neurotoxinas/farmacología , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Venenos de Escorpión/farmacología , Secuencia de Aminoácidos , Animales , Citocinas/biosíntesis , Diseño de Fármacos , Femenino , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular , Canal de Potasio Kv1.3/genética , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Neurotoxinas/química , Neurotoxinas/genética , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Biblioteca de Péptidos , Péptidos/química , Bloqueadores de los Canales de Potasio/química , Ingeniería de Proteínas , Ratas , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Venenos de Escorpión/química , Venenos de Escorpión/genética , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Xenopus laevis
20.
Sci Adv ; 8(37): eabn1731, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112676

RESUMEN

Voltage-gated K+ (Kv) channels mediate the flow of K+ across the cell membrane by regulating the conductive state of their activation gate (AG). Several Kv channels display slow C-type inactivation, a process whereby their selectivity filter (SF) becomes less or nonconductive. It has been proposed that, in the fast inactivation-removed Shaker-IR channel, the W434F mutation epitomizes the C-type inactivated state because it functionally accelerates this process. By introducing another pore mutation that prevents AG closure, P475D, we found a way to record ionic currents of the Shaker-IR-W434F-P475D mutant at hyperpolarized membrane potentials as the W434F-mutant SF recovers from its inactivated state. This W434F conductive state lost its high K+ over Na+ selectivity, and even NMDG+ can permeate, features not observed in a wild-type SF. This indicates that, at least during recovery from inactivation, the W434F-mutant SF transitions to a widened and noncationic specific conformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA